Of particular interest in metal encapsulating fullerenes such as ScN@C is not just how the charge is transferred between atoms of the metal nitride core and the carbon cage but how the orientation of the core impacts the electronic structure of the entire molecule. A channel for the electron backdonation is identified which leads to a charge hole on the fullerene cage, just below the valence level, which is pinned to the orientation of the metal nitride. This electron hole is overcompensated by paired electron charge at deeper levels.
View Article and Find Full Text PDFThe ability of the semiconductor industry to continue scaling microelectronic devices to ever smaller dimensions (a trend known as Moore's Law) is limited by quantum mechanical effects: as the thickness of conventional silicon dioxide (SiO(2)) gate insulators is reduced to just a few atomic layers, electrons can tunnel directly through the films. Continued device scaling will therefore probably require the replacement of the insulator with high-dielectric-constant (high-k) oxides, to increase its thickness, thus preventing tunnelling currents while retaining the electronic properties of an ultrathin SiO(2) film. Ultimately, such insulators will require an atomically defined interface with silicon without an interfacial SiO(2) layer for optimal performance.
View Article and Find Full Text PDF