Publications by authors named "Christopher Priedemann"

In a continued search for novel diterpenoid glycosides, we recently isolated and characterized a Rebaudioside M derivative with a hydroxyl group at position 15 in the central diterpene core from an extract of Stevia rebaudiana Bertoni. Here we report the complete structure elucidation of 15α-hydroxy-Rebaudioside M (2) on the basis of NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D TOCSY, NOESY) and mass spectral data. Steviol glycoside with a hydroxyl group at C-15 in the central diterpene core has not been previously reported.

View Article and Find Full Text PDF

To supply the increasing demand of natural high potency sweeteners to reduce the calories in food and beverages, we have looked to steviol glycosides. In this work we report the bioconversion of rebaudioside A to rebaudioside I using a glucosyltransferase enzyme. This bioconversion reaction adds one sugar unit with a 1→3 linkage.

View Article and Find Full Text PDF

A minor product, rebaudioside M2 (2), from the bioconversion reaction of rebaudioside A (4) to rebaudioside D (3), was isolated and the complete structure of the novel steviol glycoside was determined. Rebaudioside M2 (2) is considered an isomer of rebaudioside M (1) and contains a relatively rare 1→6 sugar linkage. It was isolated and characterized with NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D-TOCSY, and NOESY) and mass spectral data.

View Article and Find Full Text PDF

Arylethynylchromium(III) complexes of the form trans-[Cr(cyclam)(CCC(6)H(4)R)(2)]OTf (where cyclam = 1,4,8,11-tetraazacyclotetradecane, R = H, CH(3), or CF(3) in the para position, and OTf = trifluoromethanesulfonate) have been prepared and characterized by IR spectroscopy and X-ray diffraction. The complexes are emissive with excited-state lifetimes in a deoxygenated fluid solution between 200 and 300 micros.

View Article and Find Full Text PDF