Publications by authors named "Christopher Pollock"

X-ray spectroscopies are uniquely poised to describe the geometric and electronic structure of metalloenzyme active sites under a wide variety of sample conditions. UV/Vis (ultraviolet/visible) spectroscopy is a similarly well-established technique that can identify and quantify catalytic intermediates. The work described here reports the first simultaneous collection of full in situ UV/Vis and high-energy resolution fluorescence detected x-ray absorption spectra.

View Article and Find Full Text PDF

Alkane monooxygenase (AlkB) is the dominant enzyme that catalyzes the oxidation of liquid alkanes in the environment. Two recent structural models derived from cryo-electron microscopy (cryo-EM) reveal an unusual active site: a histidine-rich center that binds two iron ions without a bridging ligand. To ensure that potential photoreduction and radiation damage are not responsible for the absence of a bridging ligand in the cryo-EM structures, spectroscopic methods are needed.

View Article and Find Full Text PDF
Article Synopsis
  • Transition metal nitride-based materials are gaining attention as effective alternatives to precious metals for catalyzing the oxygen reduction reaction in alkaline environments.
  • The study highlights how the structure of a manganese nitride core influences the growth of a manganese oxide shell, resulting in significantly improved electrocatalytic activity.
  • Findings suggest that the enhanced performance is due to a more reactive hydroxylated surface on the manganese oxide, shaped by the strain from the underlying nitride, paving the way for future advancements in catalyst design.
View Article and Find Full Text PDF
Article Synopsis
  • - Hyoscyamine 6β-hydroxylase (H6H) is an enzyme that uses iron and 2-oxoglutarate to convert hyoscyamine into the antinausea drug scopolamine through a two-step process involving hydroxylation and epoxidation.
  • - The enzyme first performs hydroxylation at the C6 position before coupling it to the C7 position, but the mechanism of how H6H prefers this route over simply hydroxylating at C7 is unclear.
  • - Research shows that H6H does not rely on substrate positioning for epoxidation; instead, a small angle change in how the iron approaches the substrate influences whether it performs hydroxylation
View Article and Find Full Text PDF

X-ray spectroscopy is a valuable technique for the study of many materials systems. Characterizing reactions in situ and operando can reveal complex reaction kinetics, which is crucial to understanding active site composition and reaction mechanisms. In this project, the design, fabrication and testing of an open-source and easy-to-fabricate electrochemical cell for in situ electrochemistry compatible with X-ray absorption spectroscopy in both transmission and fluorescence modes are accomplished via windows with large opening angles on both the upstream and downstream sides of the cell.

View Article and Find Full Text PDF

Hydrogen fuel cells have drawn increasing attention as one of the most promising next-generation power sources for future automotive transportation. Developing efficient, durable, and low-cost electrocatalysts, to accelerate the sluggish oxygen reduction reaction (ORR) kinetics, is urgently needed to advance fuel cell technologies. Herein, we report on metal-organic frameworks-derived nonprecious dual metal single-atom catalysts (SACs) (Zn/Co-N-C), consisting of Co-N and Zn-N local structures.

View Article and Find Full Text PDF

Advances in electrocatalysis research rely heavily on building a thorough mechanistic understanding of catalyst active sites under realistic operating conditions. Only recently have techniques emerged that enable sensitive spectroscopic data collection to distinguish catalytically relevant surface sites from the underlying bulk material under applied potential in the presence of an electrolyte layer. Here, we demonstrate that high-energy-resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) is a powerful spectroscopic method which offers critical surface chemistry insights in CO electroreduction with sub-electronvolt energy resolution using hard X-rays.

View Article and Find Full Text PDF

Lithium-sulfur batteries represent an attractive option for energy storage applications. A deeper understanding of the multistep lithium-sulfur reactions and the electrocatalytic mechanisms are required to develop advanced, high-performance batteries. We have systematically investigated the lithium-sulfur redox processes catalyzed by a cobalt single-atom electrocatalyst (Co-SAs/NC) via operando confocal Raman microscopy and x-ray absorption spectroscopy (XAS).

View Article and Find Full Text PDF

Valence-to-core X-ray emission spectroscopy (VtC XES) is an emerging technique that uses hard X-rays to probe the valence electronic structure of an absorbing atom. Despite finding varied applications for light elements and first row transition metals, little work has been done on heavier elements such as second and third row transition metals. This lack of application is at least partially due to the relatively low resolution of the data at the high energies required to measure these elements, which obscures the useful chemical information that can be extracted from the lower energy, higher resolution spectra of lighter elements.

View Article and Find Full Text PDF

Carbon dioxide electroreduction facilitates the sustainable synthesis of fuels and chemicals. Although Cu enables CO-to-multicarbon product (C) conversion, the nature of the active sites under operating conditions remains elusive. Importantly, identifying active sites of high-performance Cu nanocatalysts necessitates nanoscale, time-resolved operando techniques.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the Yb valence in the compound YbB4 changes with temperature, using advanced spectroscopy techniques from 12 to 300 K.
  • Findings show that the Yb valence transitions from approximately 2.61 at 12 K to 2.67 at 300 K, supporting that YbB4 behaves as a Kondo system with significant interactions.
  • The research suggests that the notable Kondo interaction might prevent YbB4 from magnetic ordering at low temperatures, and it also examines the relationship between zero-point valence and Kondo temperature scales.
View Article and Find Full Text PDF

Platinum is used extensively as a catalyst for a wide variety of chemical reactions, though its scarcity and price present limitations to expansions of its use. To understand the origin of platinum's versatility-with the goals of both improving the efficiency of existing catalysts and mimicking its reactivity with more abundant metals-the mechanisms of platinum-catalyzed chemical reactions must be understood structural and spectroscopic characterization of these catalysts under conditions. Such data, typically consisting of complex mixtures of species, often prove challenging to interpret, inviting the aid of chemical theory.

View Article and Find Full Text PDF

The southern North Sea holds the world's highest concentration of offshore wind farms (OWFs). Northern gannets (Morus bassanus), a species considered at high risk from OWF impacts, show a strong seasonal peak there in November, but it is unclear which populations and age classes are most at risk of collision with wind turbines. We tagged adult and juvenile gannets at the world's largest colony (Bass Rock) and reviewed two sources of survey data for different age classes to study their movements through southern North Sea waters.

View Article and Find Full Text PDF

Studying the oxygen reduction reaction (ORR) in the alkaline electrolyte has proven to promote better catalytic responses and accessibility to commercialization. Ni-nanowires (NWs) were synthesized via the solvothermal method and modified with Pt using the spontaneous galvanic displacement method to obtain PtNi-NWs. Carbon Vulcan XC-72R (V) was used as the catalyst support, and they were doped with NH to obtain PtNi-NWs/V and PtNi-NWs/V-NH.

View Article and Find Full Text PDF

To robustly predict the effects of disturbance and ecosystem changes on species, it is necessary to produce structurally realistic models with high predictive power and flexibility. To ensure that these models reflect the natural conditions necessary for reliable prediction, models must be informed and tested using relevant empirical observations. Pattern-oriented modelling (POM) offers a systematic framework for employing empirical patterns throughout the modelling process and has been coupled with complex systems modelling, such as in agent-based models (ABMs).

View Article and Find Full Text PDF

There is a pressing need to quantify the risks of renewable energy developments such as offshore wind farms for protected populations. However, assessments are often based on incomplete data, or fail to consider variation in risk between sexes and at different times of year. We tracked northern gannets foraging from the world's largest colony (Bass Rock, Scotland) across five consecutive breeding seasons.

View Article and Find Full Text PDF

Recent reviews on sexual dichromatism in frogs included Mannophryne trinitatis as the only example they could find of dynamic dichromatism (males turn black when calling) within the family Aromobatidae and found no example of ontogenetic dichromatism in this group. We demonstrate ontogenetic dichromatism in M. trinitatis by rearing post-metamorphic froglets to near maturity: the throats of all individuals started as grey coloured; at around seven weeks, the throat became pale yellow in some, and more strongly yellow as development proceeded; the throats of adults are grey in males and variably bright yellow in females, backed by a dark collar.

View Article and Find Full Text PDF

Ferritin-like carboxylate-bridged non-heme diiron enzymes activate O for a variety of difficult reactions throughout nature. These reactions often begin by abstraction of hydrogen from strong CH bonds. The enzymes activate O at their diferrous cofactors to form canonical diferric peroxo intermediates, with a range of possible coordination modes.

View Article and Find Full Text PDF

Iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenases generate iron(IV)-oxo (ferryl) intermediates that can abstract hydrogen from aliphatic carbons (R-H). Hydroxylation proceeds by coupling of the resultant substrate radical (R•) and oxygen of the Fe(III)-OH complex ("oxygen rebound"). Nonhydroxylation outcomes result from different fates of the Fe(III)-OH/R• state; for example, halogenation results from R• coupling to a halogen ligand cis to the hydroxide.

View Article and Find Full Text PDF

Proton transfer reactions are of central importance to a wide variety of biochemical processes, though determining proton location and monitoring proton transfers in biological systems is often extremely challenging. Herein, we use two-color valence-to-core X-ray emission spectroscopy (VtC XES) to identify protonation events across three oxidation states of the O -activating, radical-initiating manganese-iron heterodinuclear cofactor in a class I-c ribonucleotide reductase. This is the first application of VtC XES to an enzyme intermediate and the first simultaneous measurement of two-color VtC spectra.

View Article and Find Full Text PDF

A ribonucleotide reductase (RNR) from Flavobacterium johnsoniae ( Fj) differs fundamentally from known (subclass a-c) class I RNRs, warranting its assignment to a new subclass, Id. Its β subunit shares with Ib counterparts the requirements for manganese(II) and superoxide (O) for activation, but it does not require the O-supplying flavoprotein (NrdI) needed in Ib systems, instead scavenging the oxidant from solution. Although Fj β has tyrosine at the appropriate sequence position (Tyr 104), this residue is not oxidized to a radical upon activation, as occurs in the Ia/b proteins.

View Article and Find Full Text PDF

The iron(II)- and 2-(oxo)glutarate-dependent (Fe/2OG) oxygenases catalyze an array of challenging transformations via a common iron(IV)-oxo (ferryl) intermediate, which in most cases abstracts hydrogen (H•) from an aliphatic carbon of the substrate. Although it has been shown that the relative disposition of the Fe-O and C-H bonds can control the rate of H• abstraction and fate of the resultant substrate radical, there remains a paucity of structural information on the actual ferryl states, owing to their high reactivity. We demonstrate here that the stable vanadyl ion [(V-oxo)] binds along with 2OG or its decarboxylation product, succinate, in the active site of two different Fe/2OG enzymes to faithfully mimic their transient ferryl states.

View Article and Find Full Text PDF