CHESS 3 represents an improved human gene catalog based on nearly 10,000 RNA-seq experiments across 54 body sites. It significantly improves current genome annotation by integrating the latest reference data and algorithms, machine learning techniques for noise filtering, and new protein structure prediction methods. CHESS 3 contains 41,356 genes, including 19,839 protein-coding genes and 158,377 transcripts, with 14,863 protein-coding transcripts not in other catalogs.
View Article and Find Full Text PDFMetagenomic experiments expose the wide range of microscopic organisms in any microbial environment through high-throughput DNA sequencing. The computational analysis of the sequencing data is critical for the accurate and complete characterization of the microbial community. To facilitate efficient and reproducible metagenomic analysis, we introduce a step-by-step protocol for the Kraken suite, an end-to-end pipeline for the classification, quantification and visualization of metagenomic datasets.
View Article and Find Full Text PDFJ Open Source Softw
December 2022
Unlabelled: Kraken and KrakenUniq are widely-used tools for classifying metagenomics sequences. A key requirement for these systems is a database containing all from all genomes that the users want to be able to detect, where = 31 by default. This database can be very large, easily exceeding 100 gigabytes (GB) and sometimes 400 GB.
View Article and Find Full Text PDFSummary: PhyloCSF++ is an efficient and parallelized C++ implementation of the popular PhyloCSF method to distinguish protein-coding and non-coding regions in a genome based on multiple sequence alignments (MSAs). It can score alignments or produce browser tracks for entire genomes in the wig file format. Additionally, PhyloCSF++ annotates coding sequences in GFF/GTF files using precomputed tracks or computes and scores MSAs on the fly with MMseqs2.
View Article and Find Full Text PDF: Metagenomic sequencing has the potential to identify a wide range of pathogens in human tissue samples. Sarcoidosis is a complex disorder whose etiology remains unknown and for which a variety of infectious causes have been hypothesized. We sought to conduct metagenomic sequencing on cases of ocular and periocular sarcoidosis, none of them with previously identified infectious causes.
View Article and Find Full Text PDFThe ability to detect recombination in pathogen genomes is crucial to the accuracy of phylogenetic analysis and consequently to forecasting the spread of infectious diseases and to developing therapeutics and public health policies. However, in case of the SARS-CoV-2, the low divergence of near-identical genomes sequenced over a short period of time makes conventional analysis infeasible. Using a novel method, we identified 225 anomalous SARS-CoV-2 genomes of likely recombinant origins out of the first 87,695 genomes to be released, several of which have persisted in the population.
View Article and Find Full Text PDFSummary: Although the ability to programmatically summarize and visually inspect sequencing data is an integral part of genome analysis, currently available methods are not capable of handling large numbers of samples. In particular, making a visual comparison of transcriptional landscapes between two sets of thousands of RNA-seq samples is limited by available computational resources, which can be overwhelmed due to the sheer size of the data. In this work, we present TieBrush, a software package designed to process very large sequencing datasets (RNA, whole-genome, exome, etc.
View Article and Find Full Text PDFThe ability to detect recombination in pathogen genomes is crucial to the accuracy of phylogenetic analysis and consequently to forecasting the spread of infectious diseases and to developing therapeutics and public health policies. However, previous methods for detecting recombination and reassortment events cannot handle the computational requirements of analyzing tens of thousands of genomes, a scenario that has now emerged in the effort to track the spread of the SARS-CoV-2 virus. Furthermore, the low divergence of near-identical genomes sequenced in short periods of time presents a statistical challenge not addressed by available methods.
View Article and Find Full Text PDFMotivation: Computing the uniqueness of k-mers for each position of a genome while allowing for up to e mismatches is computationally challenging. However, it is crucial for many biological applications such as the design of guide RNA for CRISPR experiments. More formally, the uniqueness or (k, e)-mappability can be described for every position as the reciprocal value of how often this k-mer occurs approximately in the genome, i.
View Article and Find Full Text PDFBackground: Natural variations in a genome can drastically alter the CRISPR-Cas9 off-target landscape by creating or removing sites. Despite the resulting potential side-effects from such unaccounted for sites, current off-target detection pipelines are not equipped to include variant information. To address this, we developed VARiant-aware detection and SCoring of Off-Targets (VARSCOT).
View Article and Find Full Text PDFBackground: The use of novel algorithmic techniques is pivotal to many important problems in life science. For example the sequencing of the human genome (Venter et al., 2001) would not have been possible without advanced assembly algorithms and the development of practical BWT based read mappers have been instrumental for NGS analysis.
View Article and Find Full Text PDF