Publications by authors named "Christopher Papaharalambus"

Annually, ≈30,000 Hasidic and Orthodox Jews travel to Uman, Ukraine, during the Jewish New Year to pray at the burial place of the founder of the Breslov Hasidic movement. Many pilgrims come from the northeastern United States. The global health implications of this event were seen in 2019 when measles outbreaks in the United States and Israel were linked to the pilgrimage.

View Article and Find Full Text PDF

Rationale: NADPH oxidases (Noxes) regulate vascular physiology and contribute to the pathogenesis of vascular disease. In vascular smooth muscle cells (VSMCs), the interactions of individual Nox homologs with regulatory proteins are poorly defined.

Objective: The objective of this study was to identify novel NADPH oxidase regulatory proteins.

View Article and Find Full Text PDF

The proliferation of vascular smooth muscle cells is important in the pathogenesis of many vascular diseases. Reactive oxygen species (ROS) produced by NADPH oxidases in smooth muscle cells have been shown to participate in signaling cascades regulating proliferation induced by platelet-derived growth factor (PDGF), a powerful smooth muscle mitogen. We sought to determine the role of Nox5 in the regulation of PDGF-stimulated human aortic smooth muscle cell (HASMC) proliferation.

View Article and Find Full Text PDF

The development of vascular disease has its origins in an initial insult to the vessel wall by biological or mechanical factors. The disruption of homeostatic mechanisms leads to alteration of the original architecture of the vessel and its biological responsiveness, contributing to acute or chronic diseases such as stroke, hypertension, and atherosclerosis. Endothelial dysfunction, macrophage infiltration of the vessel wall, and proliferation and migration of smooth muscle cells all involve different types of reactive oxygen species produced by various vessel wall components.

View Article and Find Full Text PDF

We have previously demonstrated that both isoprenylcysteine carboxylmethyltransferase (ICMT) and one of its substrates, the RhoGTPase Rac1, are critical for the tumor necrosis factor alpha (TNF alpha) stimulation of vascular cell adhesion molecule-1 expression in endothelial cells (EC). Here, we have shown that ICMT regulates TNF alpha stimulation of Rac1 activity. TNF alpha stimulation of EC increased the membrane association of Rac1, an event that is essential for Rac1 activity.

View Article and Find Full Text PDF