Publications by authors named "Christopher P Zschiedrich"

Utilization of energy-rich carbon sources such as glucose is fundamental to the evolutionary success of bacteria. Glucose can be catabolized via glycolysis for feeding the intermediary metabolism. The methylglyoxal synthase MgsA produces methylglyoxal from the glycolytic intermediate dihydroxyacetone phosphate.

View Article and Find Full Text PDF

The emergence of multidrug-resistant bacteria emphasizes the urgent need for novel antibacterial compounds targeting unique cellular processes. Two-component signal transduction systems (TCSs) are commonly used by bacteria to couple environmental stimuli to adaptive responses, are absent in mammals, and are embedded in various pathogenic pathways. To attenuate these signaling pathways, we aimed to target the TCS signal transducer histidine kinase (HK) by focusing on their highly conserved adenosine triphosphate-binding domain.

View Article and Find Full Text PDF

Two-component systems (TCS) comprising sensor histidine kinases and response regulator proteins are among the most important players in bacterial and archaeal signal transduction and also occur in reduced numbers in some eukaryotic organisms. Given their importance to cellular survival, virulence, and cellular development, these systems are among the most scrutinized bacterial proteins. In the recent years, a flurry of bioinformatics, genetic, biochemical, and structural studies have provided detailed insights into many molecular mechanisms that underlie the detection of signals and the generation of the appropriate response by TCS.

View Article and Find Full Text PDF

EIIA(Ntr) is a member of a truncated phosphotransferase (PTS) system that serves regulatory functions and exists in many Proteobacteria in addition to the sugar transport PTS. In Escherichia coli, EIIA(Ntr) regulates K(+) homeostasis through interaction with the K(+) transporter TrkA and sensor kinase KdpD. In the β-Proteobacterium Ralstonia eutropha H16, EIIA(Ntr) influences formation of the industrially important bioplastic poly(3-hydroxybutyrate) (PHB).

View Article and Find Full Text PDF

Genome annotation and access to information from large-scale experimental approaches at the genome level are essential to improve our understanding of living cells and organisms. This is even more the case for model organisms that are the basis to study pathogens and technologically important species. We have generated SubtiWiki, a database for the Gram-positive model bacterium Bacillus subtilis (http://subtiwiki.

View Article and Find Full Text PDF

The control of several catabolic operons in bacteria by transcription antitermination is mediated by RNA-binding proteins that consist of an RNA-binding domain and two reiterated phosphotransferase system regulation domains (PRDs). The Bacillus subtilis GlcT antitermination protein regulates the expression of the ptsG gene, encoding the glucose-specific enzyme II of the phosphotransferase system. In the absence of glucose, GlcT becomes inactivated by enzyme II-dependent phosphorylation at its PRD1, whereas the phosphotransferase HPr phosphorylates PRD2.

View Article and Find Full Text PDF