Proliferating cell nuclear antigen (PCNA) is a pivotal replication protein, which also controls cellular responses to DNA damage. Posttranslational modification of PCNA by SUMO and ubiquitin modulate these responses. How the modifiers alter PCNA-dependent DNA repair and damage tolerance pathways is largely unknown.
View Article and Find Full Text PDFAlthough often associated with proteasome-mediated protein degradation, ubiquitin plays essential nondegradative roles in a myriad of cellular processes, including chromatin dynamics, membrane trafficking, innate immunity, and DNA damage response. The recent progress in understanding DNA translesion synthesis (TLS), an important branch of DNA damage response, has largely been stimulated by the finding that ubiquitination of an essential nuclear protein, proliferating cell nuclear antigen (PCNA), controls precisely how eukaryotic cells respond to DNA damage. Despite the remarkable activity of the TLS polymerases in synthesizing past the damaged nucleotides, they are intrinsically error-prone on the normal DNA template.
View Article and Find Full Text PDFPCNA ubiquitination in response to DNA damage leads to the recruitment of specialized translesion polymerases to the damage locus. This constitutes one of the initial steps in translesion synthesis (TLS)--a critical pathway for cell survival and for maintenance of genome stability. The recent crystal structure of ubiquitinated PCNA (Ub-PCNA) sheds light on the mode of association between the two proteins but also revealed that paradoxically, the ubiquitin surface engaged in PCNA interactions was the same as the surface implicated in translesion polymerase binding.
View Article and Find Full Text PDF