Publications by authors named "Christopher P Mancuso"

Determining why only a fraction of encountered or applied bacterial strains engraft in a given person's microbiome is crucial for understanding and engineering these communities. Previous work has established that metabolism can determine colonization success , but relevance of bacterial warfare in preventing engraftment has been less explored. Here, we demonstrate that intraspecies warfare presents a significant barrier to strain transmission in the skin microbiome by profiling 14,884 pairwise interactions between cultured from eighteen human subjects from six families.

View Article and Find Full Text PDF

Human facial skin microbiomes (FSMs) on adults are dominated by just two bacterial species, and . Underlying this apparent simplicity, each FSM harbors multiple strains of both species whose assembly dynamics on individuals are unknown. Here, we use 4,055 isolate genomes and 360 metagenomes to trace the dynamics of strains on individuals and their transmission.

View Article and Find Full Text PDF

The gut microbiome is essential for processing complex food compounds and synthesizing nutrients that the host cannot digest or produce, respectively. New model systems are needed to study how the metabolic capacity provided by the gut microbiome impacts the nutritional status of the host, and to explore possibilities for altering host metabolic capacity via the microbiome. Here, we colonized the nematode Caenorhabditis elegans gut with cellulolytic bacteria that enabled C.

View Article and Find Full Text PDF

Environmental disturbances have long been theorized to play a significant role in shaping the diversity and composition of ecosystems. However, an inability to specify the characteristics of a disturbance experimentally has produced an inconsistent picture of diversity-disturbance relationships (DDRs). Here, using a high-throughput programmable culture system, we subjected a soil-derived bacterial community to dilution disturbance profiles with different intensities (mean dilution rates), applied either constantly or with fluctuations of different frequencies.

View Article and Find Full Text PDF

Quantitative diagnostics that are rapid, inexpensive, sensitive, robust, and field-deployable are needed to contain the spread of infectious diseases and inform treatment strategies. While current gold-standard techniques are highly sensitive and quantitative, they are slow and require expensive equipment. Conversely, current rapid field-deployable assays available provide essentially binary information about the presence of the target analyte, not a quantitative measure of concentration.

View Article and Find Full Text PDF
Article Synopsis
  • Determining the location history of objects is important for health, commerce, and food safety, and using microbes can provide a cost-effective way to track provenance.
  • Researchers developed a scalable microbial spore system capable of identifying object origins in under an hour, achieving high sensitivity and environmental safety.
  • This system addresses challenges like persistence, scalability, and rapid detection, and is compatible with SHERLOCK technology for diverse applications.
View Article and Find Full Text PDF

Solar panel surfaces, although subjected to a range of extreme environmental conditions, are inhabited by a diverse microbial community adapted to solar radiation, desiccation and temperature fluctuations. This is the first time a new bacterial species has been isolated from this environment. Strain R4DWN belongs to the genus and was isolated from a solar panel surface in Boston, MA, USA.

View Article and Find Full Text PDF

Continuous culture methods enable cells to be grown under quantitatively controlled environmental conditions, and are thus broadly useful for measuring fitness phenotypes and improving our understanding of how genotypes are shaped by selection. Extensive recent efforts to develop and apply niche continuous culture devices have revealed the benefits of conducting new forms of cell culture control. This includes defining custom selection pressures and increasing throughput for studies ranging from long-term experimental evolution to genome-wide library selections and synthetic gene circuit characterization.

View Article and Find Full Text PDF

Precise control over microbial cell growth conditions could enable detection of minute phenotypic changes, which would improve our understanding of how genotypes are shaped by adaptive selection. Although automated cell-culture systems such as bioreactors offer strict control over liquid culture conditions, they often do not scale to high-throughput or require cumbersome redesign to alter growth conditions. We report the design and validation of eVOLVER, a scalable do-it-yourself (DIY) framework, which can be configured to carry out high-throughput growth experiments in molecular evolution, systems biology, and microbiology.

View Article and Find Full Text PDF

Protein aggregation is a hallmark of many diseases but also underlies a wide range of positive cellular functions. This phenomenon has been difficult to study because of a lack of quantitative and high-throughput cellular tools. Here, we develop a synthetic genetic tool to sense and control protein aggregation.

View Article and Find Full Text PDF

Background: Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid.

View Article and Find Full Text PDF

A newly revealed cellular strategy for modularizing function inspires engineers.

View Article and Find Full Text PDF