Publications by authors named "Christopher P Doe"

Structure guided optimization of a series of nonpeptidic alkyl amine renin inhibitors allowed the rational incorporation of additional polar functionality. Replacement of the cyclohexylmethyl group occupying the S1 pocket with a (R)-(tetrahydropyran-3-yl)methyl group and utilization of a different attachment point led to the identification of clinical candidate 9. This compound demonstrated excellent selectivity over related and unrelated off-targets, >15% oral bioavailability in three species, oral efficacy in a double transgenic rat model of hypertension, and good exposure in humans.

View Article and Find Full Text PDF

Structure-based design led to the discovery of a novel class of renin inhibitors in which an unprecedented phenyl ring filling the S1 site is attached to the phenyl ring filling the S3 pocket. Optimization for several parameters including potency in the presence of human plasma, selectivity against CYP3A4 inhibition and improved rat oral bioavailability led to the identification of 8d which demonstrated antihypertensive efficacy in a transgenic rat model of human hypertension.

View Article and Find Full Text PDF

Structure-guided drug design led to new alkylamine renin inhibitors with improved in vitro and in vivo potency. Lead compound 21a, has an IC(50) of 0.83nM for the inhibition of human renin in plasma (PRA).

View Article and Find Full Text PDF

Recent studies using known Rho-associated kinase isoform 1 (ROCK1) inhibitors along with cellular and molecular biology data have revealed a pivotal role of this enzyme in many aspects of cardiovascular function. Here we report a series of ROCK1 inhibitors which were originally derived from a dihydropyrimidinone core 1. Our efforts focused on the optimization of dihydropyrimidine 2, which resulted in the identification of a series of dihydropyrimidines with improved pharmacokinetics and P450 properties.

View Article and Find Full Text PDF

Previously, it was shown that selective deletion of peroxisome proliferator activated receptor delta (PPARdelta) in the heart resulted in a cardiac lipotoxicity, hypertrophy, and heart failure. The aim of the present study was to determine the effects of chronic and selective pharmacological activation of PPARdelta in a model of congestive heart failure. PPARdelta-specific agonist treatment (GW610742X at 30 and 100 mg/kg/day for 6-9 weeks) was initiated immediately postmyocardial infarction (MI) in Sprague-Dawley rats.

View Article and Find Full Text PDF

Angiotensin II (Ang II) activates p38 mitogen-activated protein kinase (p38 MAPK) and increases reactive oxygen species (ROS), but the nature of the relationship in vivo is not fully understood. We assess the effect of SB239063AN, a highly selective, orally active, p38 MAPK inhibitor, on Ang II-dependent hypertension, target-organ damage and ROS production. Sprague-Dawley rats and MAPKAP kinase-2 knockout mice were infused with Ang II.

View Article and Find Full Text PDF

Rho kinase (ROCK1) mediates vascular smooth muscle contraction and is a potential target for the treatment of hypertension and related disorders. Indazole amide 3 was identified as a potent and selective ROCK1 inhibitor but possessed poor oral bioavailability. Optimization of this lead resulted in the discovery of a series of dihydropyridones, exemplified by 13, with improved pharmacokinetic parameters relative to the initial lead.

View Article and Find Full Text PDF

The discovery, proposed binding mode, and optimization of a novel class of Rho-kinase inhibitors are presented. Appropriate substitution on the 6-position of the azabenzimidazole core provided subnanomolar enzyme potency in vitro while dramatically improving selectivity over a panel of other kinases. Pharmacokinetic data was obtained for the most potent and selective examples and one (6n) has been shown to lower blood pressure in a rat model of hypertension.

View Article and Find Full Text PDF

Several peptidic urotensin-II (UT) receptor antagonists exert 'paradoxical' agonist activity in recombinant cell- and tissue-based bioassay systems, likely the result of differential urotensin-II receptor (UT receptor) signal transduction/coupling efficiency between assays. The present study has examined this phenomenon in mammalian arteries and recombinant UT-HEK (human embryonic kidney) cells.BacMam-mediated recombinant UT receptor upregulation in HEK cells augmented agonist activity for all four peptidic UT ligands studied.

View Article and Find Full Text PDF

Liver X receptor (LXR) nuclear receptors regulate the expression of genes involved in whole body cholesterol trafficking, including absorption, excretion, catabolism, and cellular efflux, and possess both anti-inflammatory and antidiabetic actions. Accordingly, LXR is considered an appealing drug target for multiple indications. Synthetic LXR agonists demonstrated inhibition of atherosclerosis progression in murine genetic models; however, these and other studies indicated that their major undesired side effect is an increase of plasma and hepatic triglycerides.

View Article and Find Full Text PDF

Urotensin-II, a potent mammalian vasoconstrictor, may play a role in the etiology of essential hypertension. However, a species suitable for assessing such a role, one where a "classical" systemic hypertensive response (increase in mean blood pressure and systemic vascular resistance) is observed following bolus i.v.

View Article and Find Full Text PDF

p38 Mitogen-activated protein kinase (MAPK) has been implicated in cardiovascular disease and is activated by various factors, including neurohormones (e.g., catecholamines, angiotensin II and endothelin), hypoxia and wall stress.

View Article and Find Full Text PDF

1 Urotensin-II (U-II) is among the most potent mammalian vasoconstrictors identified and may play a role in the aetiology of essential hypertension. Currently, only one mouse U-II receptor (UT) gene has been cloned. It is postulated that this protein is solely responsible for mediating U-II-induced vasoconstriction.

View Article and Find Full Text PDF

Introduction: Drug-induced QT prolongation is a major clinical risk factor for arrhythmia induction, particularly torsades de pointes. QT interval is rate dependent, and many formulae exist that attempt to correct QT for changes in heart rate. Most correction factors are acknowledged to overcorrect at high heart rates, undercorrect at low heart rates, and tend to be species specific.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionblg1e6g9t30es7mepf2bibqhi5n2otvp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once