Publications by authors named "Christopher Obagi"

Syntrophins are scaffold proteins that regulate the subcellular localization of diacylglycerol kinase zeta (DGK-zeta), an enzyme that phosphorylates the lipid second-messenger diacylglycerol to yield phosphatidic acid. DGK-zeta and syntrophins are abundantly expressed in neurons of the developing and adult brain, but their function is unclear. Here, we show that they are present in cell bodies, neurites, and growth cones of cultured cortical neurons and differentiated N1E-115 neuroblastoma cells.

View Article and Find Full Text PDF

Syntrophins are scaffold proteins of the dystrophin glycoprotein complex (DGC), which target ion channels, receptors, and signaling proteins to specialized subcellular domains. A yeast two-hybrid screen of a human brain cDNA library with the PSD-95, Discs-large, ZO-1 (PDZ) domain of gamma1-syntrophin yielded overlapping clones encoding the C terminus of TAPP1, a pleckstrin homology (PH) domain-containing adapter protein that interacts specifically with phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)). In biochemical assays, the C terminus of TAPP1 bound specifically to the PDZ domains of gamma1-, alpha1-, and beta2-syntrophin and was required for syntrophin binding and for the correct subcellular localization of TAPP1.

View Article and Find Full Text PDF

Syntrophins are scaffolding proteins that link signaling molecules to dystrophin and the cytoskeleton. We previously reported that syntrophins interact with diacylglycerol kinase-zeta (DGK-zeta), which phosphorylates diacylglycerol to yield phosphatidic acid. Here, we show syntrophins and DGK-zeta form a complex in skeletal muscle whose translocation from the cytosol to the plasma membrane is regulated by protein kinase C-dependent phosphorylation of the DGK-zeta MARCKS domain.

View Article and Find Full Text PDF