The soluble bis(fluoroalkoxide) dioxo tungsten(VI) complexes WO2(OR)2(DME) [1, R = C(CF3)2CH3; 2, R = C(CF3)3] have been synthesized by alkoxide-chloride metathesis and evaluated as precursors for aerosol-assisted chemical vapor deposition (AACVD) of WOx. The (1)H NMR and (19)F NMR spectra of 1 and 2 are consistent with an equilibrium between the dimethoxyethane (DME) complexes 1 and 2 and the solvato complexes WO2(OR)2(CD3CN)2 [1b, R = C(CF3)2CH3; 2b, R = C(CF3)3] in acetonitrile-d3 solution. Studies of the fragmentation of 1 and 2 by mass spectrometry and thermolysis resulted in observation of DME and the corresponding alcohols, with hexafluoroisobutylene also generated from 1.
View Article and Find Full Text PDFAerosol-assisted chemical vapor deposition (AACVD) of WOx was demonstrated using the oxo tungsten(VI) fluoroalkoxide single-source precursors, WO[OCCH3(CF3)2]4 and WO[OC(CH3)2CF3]4. Substoichiometric amorphous tungsten oxide thin films were grown on indium tin oxide (ITO) substrates in nitrogen at low deposition temperature (100-250 °C). At growth temperatures above 300 °C, the W18O49 monoclinic crystalline phase was observed.
View Article and Find Full Text PDFThe partially fluorinated oxo-alkoxide tungsten(VI) complexes WO(OR)4 [4; R = C(CH3)2CF3, 5; R = C(CH3)(CF3)2] have been synthesized as precursors for chemical vapour deposition (CVD) of WOx nanocrystalline material. Complexes 4 and 5 were prepared by salt metathesis between sodium salts of the fluoroalkoxides and WOCl4. Crystallographic structure analysis allows comparison of the bonding in 4 and 5 as the fluorine content of the fluoroalkoxide ligands is varied.
View Article and Find Full Text PDFTungsten nitrido complexes of the form WN(NR2)3 [R = combinations of Me, Et, (i)Pr, (n)Pr] have been synthesized as precursors for the chemical vapor deposition of WN(x)C(y), a material of interest for diffusion barriers in Cu-metallized integrated circuits. These precursors bear a fully nitrogen coordinated ligand environment and a nitrido moiety (W≡N) designed to minimize the temperature required for film deposition. Mass spectrometry and solid state thermolysis of the precursors generated common fragments by loss of free dialkylamines from monomeric and dimeric tungsten species.
View Article and Find Full Text PDF