Publications by authors named "Christopher Nzediegwu"

For several decades, water pollution has become a major threat to aquatic and non-aquatic species, including humans. Different treatment techniques have already been proposed and implemented depending on wastewater characteristics. But many of these treatment techniques are expensive and inefficient.

View Article and Find Full Text PDF

Elevated metal (e.g., alkali metals) and ash contents can negatively impact the use of biomass-derived solid fuels, including hydrochars, in clean energy generation.

View Article and Find Full Text PDF

Nitric acid activation (NA-A) effects on the surface properties, mineral phases and element compositions of biochars produced from four feedstocks at three temperatures were evaluated. NA-A increased biochar thermal stability, but its effect on ash content and surface area was feedstock-dependent, with ash content in manure pellet biochars less affected due to a high quartz content. Apart from the manure pellet biochars and the sawdust biochar produced at 400 °C, NA-A decreased the surface area of biochars by up to 100% due to reduced pore volume.

View Article and Find Full Text PDF

Biochar has been widely studied as an adsorbent for the removal of contaminants from wastewater due to its unique characteristics, such as having a large surface area, well-distributed pores and high abundance of surface functional groups. Critical review of the literature was performed to understand the state of research in utilizing biochars for industrial wastewater remediation with emphasis on pollutants that co-exist in wastewater from several industrial activities, such as textile, pharmaceutical and mining industries. Such pollutants include organic (such as synthetic dyes, phenolic compounds) and inorganic contaminants (such as cadmium, lead).

View Article and Find Full Text PDF

The effectiveness of biochar as a sorptive material to remove contaminants, particularly heavy metals, from water is dependent on biomass type and pyrolysis condition. Biochars were produced from pulp mill sludge (PMS) and rice straw (RS) with nitrogen (N) or carbon dioxide (CO) as the purging gas. The sorptive capacity of the biochars for cadmium(II), copper(II), nickel(II) and lead(II) was studied.

View Article and Find Full Text PDF

The hydrothermal carbonization (HTC) process that converts wet/dry biomass to hydrochars (for use as solid fuels or adsorbents) needs to be optimized. We investigated the interactive effects of feedstock type and HTC temperature on chemical, fuel, and surface properties of hydrochars produced from lignocellulosic (canola straw, sawdust and wheat straw) and non-lignocellulosic feedstocks (manure pellet) at 180, 240 and 300 °C. Increased HTC temperature decreased hydrochar yield and surface functional group abundance, but increased hydrochar thermal stability due to increased devolatilization and carbonization.

View Article and Find Full Text PDF

Adsorption of lead(II) using carbon-rich chars is an environmentally sustainable approach to remediate lead(II) pollution in industrial wastewater. We studied mechanisms for lead(II) adsorption from synthetic wastewater by biochars produced by microwave-assisted pyrolysis and hydrochars by hydrothermal carbonization at three temperatures using four feedstocks. Lead(II) adsorption was highest (165 mg g) for canola straw biochar produced at 500 °C.

View Article and Find Full Text PDF

We evaluated the fuel, thermal and surface properties of twelve biochars produced from three lignocellulosic (canola straw, sawdust, wheat straw) and one non-lignocellulosic feedstock (manure pellet) pyrolyzed at three temperatures using a microwave. Regardless of feedstock type, increasing pyrolysis temperature progressively reduced the abundance of -OH functional group and yield, but increased pH and thermal stability of biochar. Gross calorific values (GCV), carbon stability, and degree of aromaticity of biochars derived from lignocellulosic feedstocks increased with increasing temperature due to decreased elemental oxygen content.

View Article and Find Full Text PDF

The effectiveness of the modification of wheat straw biochar using FeCl and HCl, alone or combined, on ammonium adsorption was evaluated using kinetic and isotherm models. The adsorption mechanisms were studied by comparative analysis of the surface properties of the biochars before and after ammonium adsorption. The results indicate that the modification methods enhanced the ammonium adsorption capacity by at least 14%, due to the increased OH and OCO functional groups and specific surface area, and increased Fe/Fe redox coupling serving as an electron shuttle.

View Article and Find Full Text PDF

The environmental effectiveness of plantain peel biochar in the second season of its application to soil was studied using outdoor lysimeters (0.45 m diameter x 1.0 m height) packed with sandy soil, cultivated with potatoes (Solanum tuberosum) and irrigated with wastewater.

View Article and Find Full Text PDF

In many developing countries water scarcity has led to the use of wastewater, often untreated, to irrigate a range of crops, including tuber crops such as potatoes (Solanum tuberosum L.). Untreated wastewater contains a wide range of contaminants, including heavy metals, which can find their way into the edible part of the crop, thereby posing a risk to human health.

View Article and Find Full Text PDF