Gasdermin D (GSDMD) is a key executor of pyroptosis, a form of inflammation-induced programmed cell death. Recently, GSDMD has been shown to play important roles in the development of various inflammatory-related human diseases including heart failure and cancer, suggesting that it is a promising therapeutic target for these diseases. While extensive studies on GSDMD's role in pyroptosis have been reported, it is challenging to study its function due to the lack of enzymatic activity of GSDMD.
View Article and Find Full Text PDFThe Hippo pathway plays crucial roles in governing various biological processes during tumorigenesis and metastasis. Within this pathway, upstream signaling stimuli activate a core kinase cascade, involving MST1/2 and LATS1/2, that subsequently phosphorylates and inhibits the transcriptional co-activators YAP and its paralog TAZ. This inhibition modulates the transcriptional regulation of downstream target genes, impacting cell proliferation, migration, and death.
View Article and Find Full Text PDFThis review explores the diverse applications of gold nanoparticles (AuNPs) in neurological diseases, with a specific focus on Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. The introduction highlights the pivotal role of neuroinflammation in these disorders and introduces the unique properties of AuNPs. The review's core examines the mechanisms by which AuNPs exert neuroprotection and anti-neuro-inflammatory effects, elucidating various pathways through which they manifest these properties.
View Article and Find Full Text PDFSolid tumours can universally evade contact inhibition of proliferation (CIP), a mechanism halting cell proliferation when cell-cell contact occurs. Merlin, an ERM-like protein, crucially regulates CIP and is frequently deactivated in various cancers, indicating its significance as a tumour suppressor in cancer biology. Despite extensive investigations into Merlin's role in cancer, its lack of intrinsic catalytic activity and frequent conformation changes have made it notoriously challenging to study.
View Article and Find Full Text PDFDesorption electrospray ionization mass spectrometry imaging (DESI-MSI) is a molecular imaging method that can be used to elucidate the small-molecule composition of tissues and map their spatial information using two-dimensional ion images. This technique has been used to investigate the molecular profiles of variety of tissues, including within the central nervous system, specifically the brain and spinal cord. To our knowledge, this technique has yet to be applied to tissues of the peripheral nervous system (PNS).
View Article and Find Full Text PDFColorectal cancer (CRC) is the second leading cause of cancer deaths. Despite recent advances, five-year survival rates remain largely unchanged. Desorption electrospray ionization mass spectrometry imaging (DESI) is an emerging nondestructive metabolomics-based method that retains the spatial orientation of small-molecule profiles on tissue sections, which may be validated by 'gold standard' histopathology.
View Article and Find Full Text PDFUnlabelled: The main cause of cancer-associated deaths is the spread of cancer cells to distant organs. Despite its success in the primary tumor setting, modern chemotherapeutic strategies are rendered ineffective at treating metastatic disease, largely due to the development of resistance. The adaptor protein ezrin has been shown to promote cancer metastasis in multiple preclinical models and is associated with poor prognosis in several cancer types, including breast cancer.
View Article and Find Full Text PDFOxygen glucose deprivation (OGD) can produce hypoxia-induced neurotoxicity and is a mature in vitro model of hypoxic cell damage. Activated AMP-activated protein kinase (AMPK) regulates a downstream pathway that substantially increases bioenergy production, which may be a key player in physiological energy and has also been shown to play a role in regulating neuroprotective processes. Resveratrol is an effective activator of AMPK, indicating that it may have therapeutic potential as a neuroprotective agent.
View Article and Find Full Text PDFAmyloid-beta (Aβ) peptides have a role in the pathogenesis of Alzheimer's disease (AD) and are thought to promote oxidative stress, endoplasmic reticulum (ER) stress and mitochondrial deficiency, causing neuronal loss in the AD brain. The potential applications of glutathione conjugated gold nanoparticles (GSH-AuNPs) suggest they might have therapeutic value. Several studies have demonstrated that the effects of nanoparticles could provide protective roles in AD.
View Article and Find Full Text PDFHigh-grade serous ovarian cancer (HGSOC) is a highly lethal gynecologic cancer, in part due to resistance to platinum-based chemotherapy reported among 20% of patients. This study aims to generate novel hypotheses of the biological mechanisms underlying chemotherapy resistance, which remain poorly understood. Differential expression analyses of mRNA- and microRNA-sequencing data from HGSOC patients of The Cancer Genome Atlas identified 21 microRNAs associated with angiogenesis and 196 mRNAs enriched for adaptive immunity and translation.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the major cause of neurodegeneration worldwide and is characterized by the accumulation of amyloid beta (Aβ) in the brain, which is associated with neuronal loss and cognitive impairment. Liver X receptor (LXR), a critical nuclear receptor, and major regulator in lipid metabolism and inflammation, is suggested to play a protective role against the mitochondrial dysfunction noted in AD. In our study, our established 3D gelatin scaffold model and a well characterized in vivo (APP/PS1) murine model of AD were used to directly investigate the molecular, biochemical and behavioral effects of neuronal stem cell exposure to Aβ to improve understanding of the in vivo etiology of AD.
View Article and Find Full Text PDFAmbient air pollution is a global public health issue. Recent evidence suggests that exposure to fine aerosolized particulate matter (PM) as small as ≤2.5 microns (PM) is neurotoxic to brain structures.
View Article and Find Full Text PDFLung carcinoids are variably aggressive and mechanistically understudied neuroendocrine neoplasms (NENs). Here, we identified and elucidated the function of a miR-375/yes-associated protein (YAP) axis in lung carcinoid (H727) cells. miR-375 and YAP are respectively high and low expressed in wild-type H727 cells.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder with progressive memory loss resulting in dementia. Amyloid-beta (Aβ) peptides play a critical role in the pathogenesis of the disease by promoting inflammation and oxidative stress, leading to neurodegeneration in the brains of AD patients. Numerous in vitro 3D cell culture models are useful mimics for understanding cellular changes that occur during AD under in vivo conditions.
View Article and Find Full Text PDFExpression of olfactory receptors (ORs) in non-olfactory tissues has been widely reported over the last 20 years. Olfactory marker protein (OMP) is highly expressed in mature olfactory sensory neurons (mOSNs) of the olfactory epithelium. It is involved in the olfactory signal transduction pathway, which is mediated by well-conserved components, including ORs, olfactory G protein (Golf), and adenylyl cyclase 3 (AC3).
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neuronal dementia with progressive memory loss. Amyloid-beta (Aβ) peptides has major effect in the neurodegenerative disorder, which are thought to promote mitochondrial dysfunction in AD brains. Anti-AD drugs acting upon the brain are generally difficult to develop, often cause serious side effects or lack therapeutic efficacy.
View Article and Find Full Text PDFExcessive proliferation and apoptosis-resistance are hallmarks of cancer. Increased dynamin-related protein 1 (Drp1)-mediated mitochondrial fission is one of the mediators of this phenotype. Mitochondrial fission that accompanies the nuclear division is called mitotic fission and occurs when activated Drp1 binds partner proteins on the outer mitochondrial membrane.
View Article and Find Full Text PDFIschemic stroke arising from the sudden blockage of arteries in the brain, is a common and serious brain damaging problem worldwide, often leading to disability or death. The oxygen glucose deprivation (OGD) model was created to improve understanding of hypoxia- and hypoglycemia-induced neuronal cell injury, and provide an in vitro surrogate to assess novel treatments for cerebral hypoxia-ischemia. AMP-activated protein kinase (AMPK) is a critical neuroprotective regulator of energy homeostasis, metabolism and cell survival.
View Article and Find Full Text PDFThe Hippo pathway is an emerging signaling pathway that plays important roles in organ size control, tissue homeostasis, tumorigenesis, metastasis, drug resistance, and immune response. Although many regulators of the Hippo pathway have been reported, the extracellular stimuli and kinase regulators of the Hippo pathway remain largely unknown. To identify novel regulars of the Hippo pathway, in this study we created the first ultra-bright NanoLuc biosensor (BS) to monitor the activity of large tumor suppressor (LATS) kinase 1, a central player of the Hippo pathway.
View Article and Find Full Text PDFThe chemical carcinogen 7,12-dimethylbenz[a]anthracene (DMBA) has been used for many decades to induce skin, mammary, and ovarian tumors in mice. There are however a wide range of doses and treatment regimens in the literature that sometimes confound comparative interpretations of different studies. Here we describe a proven method to generate in vivo DMBA-mediated murine mammary tumors to enable consistent studies of the cell targeted role of genes of interest during this process.
View Article and Find Full Text PDFImmunofluorescent staining (IF) uses antigen-antibody complexes tagged with fluorochromes to observe the expression of proteins within a tissue sample. Multiple groups have described optimized methods to visualize several proteins simultaneously within the same tissue section using immunofluorescence in both mouse and human FFPE tissues. Our group routinely uses an optimized protocol described here to examine nuclear receptor expression in experimental samples from conditional knockout in vivo studies.
View Article and Find Full Text PDFCryptococcus neoformans is one of the leading causes of invasive fungal infection in humans worldwide. C. neoformans uses macrophages as a proliferative niche to increase infective burden and avoid immune surveillance.
View Article and Find Full Text PDFThiazolidinediones (TZDs) are peroxisome proliferator-activated receptor (PPAR) agonists that represent an effective class of insulin-sensitizing agents; however, clinical use is associated with weight gain and peripheral edema. To elucidate the role of PPAR expression in endothelial cells (ECs) in these side effects, EC-targeted PPAR knockout ( ) mice were placed on a high-fat diet to promote PPAR agonist-induced plasma volume expansion, and then treated with the TZD rosiglitazone. Compared with -floxed wild-type control ( ) mice, treated with rosiglitazone are resistant to an increase in extracellular fluid, water content in epididymal and inguinal white adipose tissue, and plasma volume expansion.
View Article and Find Full Text PDF