Annu Int Conf IEEE Eng Med Biol Soc
March 2011
After a stroke, many survivors have impaired motor function. Robotic rehabilitation techniques have emerged to provide a repetitive, activity-based therapy at potentially lower cost than conventional methods. Many patients exhibit intrinsic resistance to hand extension in the form of spasticity and/or hypertonia.
View Article and Find Full Text PDFBackground: Following acute therapeutic interventions, the majority of stroke survivors are left with a poorly functioning hemiparetic hand. Rehabilitation robotics has shown promise in providing patients with intensive therapy leading to functional gains. Because of the hand's crucial role in performing activities of daily living, attention to hand therapy has recently increased.
View Article and Find Full Text PDFThe rate of upper-limb amputations is increasing, and the rejection rate of prosthetic devices remains high. People with upper-limb amputation do not fully incorporate prosthetic devices into their activities of daily living. By understanding the reaching behaviors of prosthesis users, researchers can alter prosthetic devices and develop training protocols to improve the acceptance of prosthetic limbs.
View Article and Find Full Text PDFObjectives: To examine the impact of a new prosthesis on an experienced and highly motivated prosthetic limb user, to evaluate the effects of training and the ability of clinical measures to detect change, and to gain insight into the mechanisms by which improvement occurs.
Design: A single-case study.
Setting: An outpatient clinic.
This study investigated differences in adaptation to a novel dynamic environment between eight trans-radial upper extremity (UE) prosthetic users and eight naive, neurologically intact subjects. Participants held onto the handle of a robotic manipulandum and executed reaching movements within a horizontal plane following a pseudo-random sequence of targets. Curl field perturbations were imposed by the robot motors, and we compared the rate and quality of adaptation between the prosthetic and control subjects.
View Article and Find Full Text PDFThis study investigated differences in adaptation to a novel dynamic environment between the dominant and nondominant arms in 16 naive, right-handed, neurologically intact subjects. Subjects held onto the handle of a robotic manipulandum and executed reaching movements within a horizontal plane following a pseudo-random sequence of targets. Curl field perturbations were imposed by the robot motors, and we compared the rate and quality of adaptation between dominant and nondominant arms.
View Article and Find Full Text PDF