Publications by authors named "Christopher N Bowman"

Covalent hydrogel networks suffer from a stiffness-toughness conflict, where increased crosslinking density enhances the modulus of the material but also leads to embrittlement and diminished extensibility. Recently, strategies have been developed to form highly entangled hydrogels, colloquially referred to as tanglemers, by optimizing polymerization conditions to maximize the density and length of polymer chains and minimize the crosslinker concentration. It is challenging to assess entanglements in crosslinked networks beyond approximating their theoretical contribution to mechanical properties; thus, in this work, we synthesize and characterize polyacrylamide tanglemers using a photolabile crosslinker, which allows for direct assessment of covalent trapping of entanglements under tension.

View Article and Find Full Text PDF

Plant homeodomain (PHD) fingers are critical effectors of histone post-translational modifications (PTMs), acting as regulators of gene expression and genome integrity, and frequently presenting in human disease. While most PHD fingers recognize unmodified and methylated states of histone H3 lysine 4 (H3K4), the specific functions of many of the over 100 PHD finger-containing proteins in humans remain poorly understood, despite their significant implications in disease processes. In this study, we undertook a comprehensive analysis of one such poorly characterized PHD finger-containing protein, PHRF1.

View Article and Find Full Text PDF

Hydrogels are often synthesized through photoinitiated step-, chain-, and mixed-mode polymerizations, generating diverse network topologies and resultant material properties that depend on the underlying network connectivity. While many photocrosslinking reactions are available, few afford controllable connectivity of the hydrogel network. Herein, a versatile photochemical strategy is introduced for tuning the structure of poly(ethylene glycol) (PEG) hydrogels using macromolecular monomers functionalized with maleimide and styrene moieties.

View Article and Find Full Text PDF

High refractive index, low birefringence photopolymers were created via the radical-mediated, ring opening homopolymerization of 1,2-dithiolane functionalized monomers and were subsequently evaluated as holographic recording media. This investigation systematically characterized the reaction kinetics, thermodynamics, and volume shrinkage of the 1,2-dithiolane homopolymerization as well as the optical transparency, refractive index, birefringence, and holographic performance of multifunctional 1,2-dithiolane functionalized monomers and their resultant polymers. Real-time kinetic and thermodynamic analyses of a monofunctional 1,2-dithiolane monomer, lipoic acid methyl ester (LipOMe), indicated rapid monomer conversion, exceeding 90% in 60 s, with an overall enthalpy of reaction of 18 ± 1 kJ/mol.

View Article and Find Full Text PDF

Objectives: This study demonstrates the use of photopolymerization to create semi-crystalline linear polymers suitable for thermally reversible materials in dental cast moldings produced from 3D printing.

Methods: An aromatic diallyl, aliphatic dithiol chain extender, and monofunctional thiol were used in a photoinitiated system. The photopolymerization and crystallization kinetics as a function of chemistry and temperature were investigated using spectroscopy and calorimetry.

View Article and Find Full Text PDF

Michael addition between thiol- and maleimide-functionalized molecules is a long-standing approach used for bioconjugation, hydrogel crosslinking, and the functionalization of other advanced materials. While the simplicity of this chemistry enables facile synthesis of hydrogels, network degradation is also desirable in many instances. Here, the susceptibility of thiol-maleimide bonds to radical-mediated degradation is reported.

View Article and Find Full Text PDF

In nature, some organisms survive extreme environments by inducing a biostatic state wherein cellular contents are effectively vitrified. Recently, a synthetic biostatic state in mammalian cells is achieved via intracellular network formation using bio-orthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) reactions between functionalized poly(ethylene glycol) (PEG) macromers. In this work, the effects of intracellular network formation on a 3D epithelial MCF10A spheroid model are explored.

View Article and Find Full Text PDF

Granular biomaterials have found widespread applications in tissue engineering, in part because of their inherent porosity, tunable properties, injectability, and 3D printability. However, the assembly of granular hydrogels typically relies on spherical microparticles and more complex particle geometries have been limited in scope, often requiring templating of individual microgels by microfluidics or in-mold polymerization. Here, we use dithiolane-functionalized synthetic macromolecules to fabricate photopolymerized microgels via batch emulsion, and then harness the dynamic disulfide crosslinks to rearrange the network.

View Article and Find Full Text PDF

To advance the capabilities of additive manufacturing, novel resin formulations are needed that produce high-fidelity parts with desired mechanical properties that are also amenable to recycling. In this work, a thiol-ene-based system incorporating semicrystallinity and dynamic thioester bonds within polymer networks is presented. It is shown that these materials have ultimate toughness values >16 MJ cm, comparable to high-performance literature precedents.

View Article and Find Full Text PDF

Liquid crystalline elastomers (LCEs) are shape-changing materials that exhibit large deformations in response to applied stimuli. Local control of the orientation of LCEs spatially directs the deformation of these materials to realize a spontaneous shape change in response to stimuli. Prior approaches to shape programming in LCEs utilize patterning techniques that involve the detailed inscription of spatially varying nematic fields to produce sheets.

View Article and Find Full Text PDF

While many hydrogels are elastic networks crosslinked by covalent bonds, viscoelastic hydrogels with adaptable crosslinks are increasingly being developed to better recapitulate time and position-dependent processes found in many tissues. In this work, 1,2-dithiolanes are presented as dynamic covalent photocrosslinkers of hydrogels, resulting in disulfide bonds throughout the hydrogel that respond to multiple stimuli. Using lipoic acid as a model dithiolane, disulfide crosslinks are formed under physiological conditions, enabling cell encapsulation via an initiator-free light-induced dithiolane ring-opening photopolymerization.

View Article and Find Full Text PDF

Snap-through mechanisms are pervasive in everyday life in biological systems, engineered devices, and consumer products. Snap-through transitions can be realized in responsive materials via stimuli-induced mechanical instability. Here, we demonstrate a rapid and powerful snap-through response in liquid crystalline elastomers (LCEs).

View Article and Find Full Text PDF

The effect of catalysts with varying nucleophilic strength on thiol-thioester bond exchange dynamics and concomitant crystallization was studied in a model semicrystalline polymer network. It was found that the characteristic time scale of covalent bond exchange, τ, could be tuned over a ∼10-10 s range simply by changing the nucleophilicity of the catalyst. Using isothermal crystallization measurements via differential scanning calorimetry, thermodynamic and kinetic features of crystallization were considered.

View Article and Find Full Text PDF

Liquid crystalline elastomers (LCEs) are stimuli-responsive materials capable of undergoing large deformations. The thermomechanical response of LCEs is attributable to the coupling of polymer network properties and disruption of order between liquid crystalline mesogens. Complex deformations have been realized in LCEs by either programming the nematic director via surface-enforced alignment or localized mechanical deformation in materials incorporating dynamic covalent chemistries.

View Article and Find Full Text PDF

To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine-mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio-orthogonal strain-promoted azide-alkyne cycloaddition click reactions.

View Article and Find Full Text PDF

Diarylethene-functionalized liquid-crystalline elastomers (DAE-LCEs) containing thiol-anhydride bonds were prepared and shown to undergo reversible, reprogrammable photoinduced actuation. Upon exposure to UV light, a monodomain DAE-LCE generated 5.5 % strain.

View Article and Find Full Text PDF

An athermal approach to mRNA enrichment from total RNA using a self-immolative thioester linked nucleic acids (TENA) is described. Oligo(thymine) (oT) TENA has a six-atom spacing between bases which allowed TENA to selectively base-pair with polyadenine RNA. As a result of the neutral backbone of TENA and the hydrophobicity of the octanethiol end group, oT TENA is water insoluble and efficiently pulled down 93±2 % of EGFP mRNA at a concentration of 10 ng μL .

View Article and Find Full Text PDF

A combined experimental and computational study of the reactivities of seven commonly used Michael acceptors paired with two thiols within the framework of photobase-catalyzed thiol-Michael reactions is reported. The rate coefficients of the propagation (k), reverse propagation (k), chain-transfer (k), and overall reaction (k) were experimentally determined and compared with the well-accepted electrophilicity parameters of Mayr and Parr, and DFT-calculated energetics. Both Mayr's and Parr's electrophilicity parameters predict the reactivities of these structurally varying vinyl functional groups well, covering a range of overall reaction rate coefficients from 0.

View Article and Find Full Text PDF

Objective: The objective is to develop and characterize an ester-free ether-based photo-CuAAC resin with high mechanical performance, low polymerization-induced stress compared with common BisGMA/TEGDMA (70/30) resins, and improved water stability in comparison to previously developed urethane-based photo-CuAAC resins.

Methods: Triphenyl-ethane-centered ether-linked tri-azide monomers were synthesized and co-photopolymerized with ether-linked tri-alkyne monomers under visible light irradiation using a copper(II) pre-catalyst and CQ/EDAB as the initiator. The ether-based CuAAC formulation was investigated for thermo-mechanical properties, polymerization kinetics and shrinkage stress, and flexural properties with respect to a conventional BisGMA/TEGDMA (70/30) dental resin.

View Article and Find Full Text PDF

Biofabrication allows for the templating of structural features in materials on cellularly-relevant size scales, enabling the generation of tissue-like structures with controlled form and function. This is particularly relevant for growing organoids, where the application of biochemical and biomechanical stimuli can be used to guide the assembly and differentiation of stem cells and form architectures similar to the parent tissue or organ. Recently, ablative laser-scanning techniques was used to create 3D overhang features in collagen hydrogels at size scales of 10-100m and supported the crypt-villus architecture in intestinal organoids.

View Article and Find Full Text PDF

In the present study, the photo-initiated copper-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization was utilized to form structurally diverse glassy polymer networks. Systematic alterations in the monomer backbone rigidity (e.g.

View Article and Find Full Text PDF

At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings.

View Article and Find Full Text PDF

A scalable synthesis of high refractive index, optically transparent photopolymers from a family of low-viscosity multifunctional thiol and alkyne monomers via thiol-yne "click" is described herein. The monomers designed to incorporate high refractive index cores consisting of aryl and sulfide groups with high intrinsic molar refraction were synthesized starting from commercially available low-cost raw materials. The low-viscosity (<500 cP) thiol-yne resins formulated with these new multifunctional monomers and a phosphine oxide photoinitiator underwent efficient thiol-yne polymerizations upon exposure to 405 nm light at 30 mW/cm.

View Article and Find Full Text PDF

Microparticle-mediated nucleic acid delivery is a popular strategy to achieve therapeutic outcomes via antisense gene therapy. However, current methods used to fabricate polymeric microparticles suffer from suboptimal properties such as particle polydispersity and low encapsulation efficiency. Here, a new particulate delivery system based on step-growth thiol-Michael dispersion polymerization is reported in which a low polydispersity microparticle is functionalized with a synthetic nucleic acid mimic, namely, click nucleic acids (CNA).

View Article and Find Full Text PDF

Storage and transportation of protein therapeutics using refrigeration is a costly process; a reliable electrical supply is vital, expensive equipment is needed, and unique transportation is required. Reducing the reliance on the cold chain would enable low-cost transportation and storage of biologics, ultimately improving accessibility of this class of therapeutics to patients in remote locations. Herein, we report on the synthesis of charged poly(-isopropylacrylamide) nanogels that efficiently adsorb a range of different proteins of varying isoelectric points and molecular weights (e.

View Article and Find Full Text PDF