Purpose: To evaluate the effects of vascular endothelial growth factor-A (VEGF-A) gene editing in human retinal pigment epithelial (RPE) cells and human Muller cells, which are the main VEGF-A producing cells in the eye.
Methods: CRISPR-Cas9 ribonucleoprotein was used to target exon 1 in VEGF-A gene. Lipofectamine CRISPRMAX was used as a vehicle.
Background: Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly characterized by retinal pigment epithelium (RPE) degeneration with accumulation of abnormal intracellular deposits (lipofuscin) and photoreceptor death. RPE is vital for the retina and integrity of photoreceptors through its phagocytic function which is closely linked to formation of lipofuscin through daily phagocytosis of discarded photoreceptor outer segments (POS). Although phagocytosis has been implicated in AMD, it has not been directly shown to be altered in AMD.
View Article and Find Full Text PDFRetinal pigment epithelium (RPE) cells perform many functions crucial for retinal preservation and vision. RPE cell dysfunction results in various retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration (AMD). Currently, there are no effective treatments for retinal degeneration except for a small percentage of individuals with exudative AMD.
View Article and Find Full Text PDF