Total ring depopulation is sometimes used as a management strategy for emerging infectious diseases in livestock, which raises ethical concerns regarding the potential slaughter of large numbers of healthy animals. We evaluated a farm-density-based ring culling strategy to control foot-and-mouth disease (FMD) in the United Kingdom (UK), which may allow for some farms within rings around infected premises (IPs) to escape depopulation. We simulated this reduced farm density, or "target density", strategy using a spatially-explicit, stochastic, state-transition algorithm.
View Article and Find Full Text PDFWheat sharp eyespot (SES), caused by the soilborne pathogen Van der Hoeven (teleomorph: ), is a common stem disease of wheat globally. The disease caused a severe and extensive epidemic throughout the Willamette Valley of Oregon in 2014 and has remained one of the most important wheat diseases in this region. However, little was known about the genetics of host resistance to this disease.
View Article and Find Full Text PDFEpidemic outbreak control often involves a spatially explicit treatment area (quarantine, inoculation, ring cull) that covers the outbreak area and adjacent regions where hosts are thought to be latently infected. Emphasis on space however neglects the influence of treatment timing on outbreak control. We conducted field and in silico experiments with wheat stripe rust (WSR), a long-distance dispersed plant disease, to understand interactions between treatment timing and area interact to suppress an outbreak.
View Article and Find Full Text PDFDiseases characterized by long distance inoculum dispersal (LDD) are among the fastest spreading epidemics in both natural and managed landscapes. Management of such epidemics is extremely challenging because of asymptomatic infection extending at large spatial scales and frequent escape from the newly established disease sources. We compared the efficacy of area- and timing-based disease management strategies in artificially initiated field epidemics of wheat stripe rust and complemented with simulations from an updated version of the spatially explicit model EPIMUL, using model parameters relevant to field epidemics.
View Article and Find Full Text PDFEarth's aquatic food webs are overwhelmingly supported by planktonic microalgae that live in the sunlit water column where only a minimum number of physical niches are readily identifiable. Despite this paucity of environmental differentiation, these "phytoplankton" populations exhibit a rich biodiversity, an observation not easily reconciled with broadly accepted rules of resource-based competitive exclusion. This conundrum is referred to as the "Paradox of the Plankton".
View Article and Find Full Text PDFGenome evolution is driven by the activity of transposable elements (TEs). The spread of TEs can have deleterious effects including the destabilization of genome integrity and expansions. However, the precise triggers of genome expansions remain poorly understood because genome size evolution is typically investigated only among deeply divergent lineages.
View Article and Find Full Text PDFis the causal agent of Septoria tritici blotch (STB), a disease of wheat () that results in significant yield loss worldwide. 's life cycle, reproductive system, effective population size, and gene flow put it at high likelihood of developing fungicide resistance. Succinate dehydrogenase inhibitor (SDHI) fungicides (FRAC code 7) were not widely used to control STB in the Willamette Valley until 2016.
View Article and Find Full Text PDFScreening methodology of wheat genotypes for resistance to sharp eyespot (caused by ) was developed. Disease severity differed among cultivars and between field and greenhouse trials. However, the cultivars Bobtail and Rosalyn had consistently lower severity in field experiments with high sharp eyespot disease pressure.
View Article and Find Full Text PDFAim: Understanding how spatial scale of study affects observed dispersal patterns can provide insights into spatiotemporal population dynamics, particularly in systems with significant long-distance dispersal (LDD). We aimed to investigate the dispersal gradients of two rusts of wheat with spores of similar size, mass, and shape, over multiple spatial scales. We hypothesized that a single dispersal kernel could fit the dispersal from all spatial scales well, and that it would be possible to obtain similar results in spatiotemporal increase of disease when modeling based on differing scales.
View Article and Find Full Text PDFEpidemics caused by long-distance dispersed pathogens result in some of the most explosive and difficult to control diseases of both plants and animals (including humans). Yet the factors influencing disease spread, especially in the early stages of the outbreak, are not well-understood. We present scaling relationships, of potentially widespread relevance, that were developed from more than 15 years of field and in silico single focus studies of wheat stripe rust spread.
View Article and Find Full Text PDFDurable disease resistance is a key component of global food security, and combining resistance genes into "pyramids" is an important way to increase durability of resistance. The mechanisms by which pyramids impart durability are not well known. The traditional view of resistance pyramids considers the use of major resistance gene (R-gene) combinations deployed against pathogens that are primarily asexual.
View Article and Find Full Text PDFClassic evolutionary theory suggests that mutations associated with antimicrobial and pesticide resistance result in a fitness cost in the absence of the selective antimicrobial agent or pesticide. There is experimental evidence to support fitness costs associated with resistance to anti-microbial compounds and pesticides across many biological disciplines, including human pathology, entomology, plant sciences, and plant pathology. However, researchers have also found examples of neutral and increased fitness associated with resistance, where the effect of a given resistance mutation depends on environmental and biological factors.
View Article and Find Full Text PDFIncluding food production in non-food systems, such as rubber plantations and biofuel or bioenergy crops, may contribute to household food security. We evaluated the potential for planting rice, mungbean, rice cultivar mixtures, and rice intercropped with mungbean in young rubber plantations in experiments in the Arakan Valley of Mindanao in the Philippines. Rice mixtures consisted of two- or three-row strips of cultivar Dinorado, a cultivar with higher value but lower yield, and high-yielding cultivar UPL Ri-5.
View Article and Find Full Text PDFFungicide resistance can cause disease control failure in agricultural systems, and is particularly concerning with Zymoseptoria tritici, the causal agent of Septoria tritici blotch of wheat. In North America, the first quinone outside inhibitor resistance in Z. tritici was discovered in the Willamette Valley of Oregon in 2012, which prompted this hierarchical survey of commercial winter wheat fields to monitor azoxystrobin- and propiconazole-resistant Z.
View Article and Find Full Text PDFPlant diseases often cause serious yield losses in agriculture. A pathogen's invasiveness can be quantified by the basic reproductive number, R₀. Since pathogen transmission between host plants depends on the spatial separation between them, R₀ is strongly influenced by the spatial scale of the host distribution.
View Article and Find Full Text PDFThe development of resistance to multiple fungicide classes is currently limiting disease management options for many pathogens, while the discovery of new fungicide classes may become less frequent. In light of this, more research is needed to quantify virulence trade-offs of fungicide resistance in order to more fully understand the implications of fungicide resistance on pathogen fitness. The purpose of this study was to measure the virulence of azoxystrobin-resistant and -sensitive Zymoseptoria tritici populations collected from North and South Willamette Valley, Oregon, in 2012 and 2015.
View Article and Find Full Text PDFZymoseptoria tritici (previously Mycosphaerella graminicola) causes Septoria tritici blotch (STB) on wheat. The population biology of Z. tritici has been exceptionally well characterized as a result of intensive studies conducted over nearly 30 years.
View Article and Find Full Text PDFZymoseptoria tritici causes Septoria tritici blotch (STB) on wheat. An improved method of quantifying STB symptoms was developed based on automated analysis of diseased leaf images made using a flatbed scanner. Naturally infected leaves (n = 949) sampled from fungicide-treated field plots comprising 39 wheat cultivars grown in Switzerland and 9 recombinant inbred lines (RIL) grown in Oregon were included in these analyses.
View Article and Find Full Text PDFPlant pathogens pose a major challenge to maintaining food security in many parts of the world. Where major plant pathogens are fungal, fungicide resistance can often thwart regional control efforts. Zymoseptoria tritici, causal agent of Septoria tritici blotch, is a major fungal pathogen of wheat that has evolved resistance to chemical control products in four fungicide classes in Europe.
View Article and Find Full Text PDFDisease epidemics typically begin as an outbreak of a relatively small, spatially explicit population of infected individuals (focus), in which disease prevalence increases and rapidly spreads into the uninfected, at-risk population. Studies of epidemic spread typically address factors influencing disease spread through the at-risk population, but the initial outbreak may strongly influence spread of the subsequent epidemic.We initiated wheat stripe rust f.
View Article and Find Full Text PDFInfect Genet Evol
October 2014
This review briefly addresses what has been learned about resistance durability in recent years, as well as the questions that still remain. Molecular analyses of major gene interactions have potential to contribute to both breeding for resistance and improved understanding of virulence impacts on pathogen fitness. Though the molecular basis of quantitative resistance is less clear, substantial evidence has accumulated for the relative simplicity of inheritance.
View Article and Find Full Text PDFPathogen invasions pose a growing threat to ecosystem stability and public health. Guidelines for the timing and spatial extent of control measures for pathogen invasions are currently limited, however. We conducted a field experiment using wheat (Triticum aestivum) stripe rust, caused by the wind-dispersed fungus Puccinia striiformis, to study the extent to which host heterogeneity in an initial outbreak focus influences subsequent disease spread.
View Article and Find Full Text PDF