Publications by authors named "Christopher Minkyu Kang"

We recently discovered that slowed DNA synthesis induces filamentous differentiation in S. cerevisiae. We screened the BY yeast deletion strains and identified four classes of non-essential genes that are required for both slowed DNA-induced filamentous growth and classic forms of filamentous growth: (a) genes encoding regulators of the actin cytoskeleton and cell polarity, ABP1, CAP2 and HUF1 (=YOR300W), in addition to the previously known BNI1, BUD2, PEA2, SPA2 and TPM1; (b) genes that are likely involved in cell wall biosynthesis, ECM25, GAS1 and PRS3; (c) genes encoding possible regulators of protein secretion, SEC66, RPL21A and RPL34B; (d) genes encoding factors for normal mitochondrial function, IML1 and UGO1.

View Article and Find Full Text PDF

A key question in eukaryotic differentiation is whether there are common regulators or biochemical events that are required for diverse types of differentiation or whether there is a core mechanism for differentiation. The unicellular model organism Saccharomyces cerevisiae undergoes filamentous differentiation in response to environmental cues. Because conserved cell cycle regulators, the mitotic cyclin-dependent kinase Clb2/Cdc28, and its inhibitor Swe1 were found to be involved in both nitrogen starvation- and short chain alcohol-induced filamentous differentiation, they were identified as components of the core mechanism for filamentous differentiation.

View Article and Find Full Text PDF