Background: Cardiac phenotypes, such as left ventricular (LV) mass, demonstrate high heritability although most genes associated with these complex traits remain unidentified. Genome-wide association studies (GWAS) have relied on conventional 2D cardiovascular magnetic resonance (CMR) as the gold-standard for phenotyping. However this technique is insensitive to the regional variations in wall thickness which are often associated with left ventricular hypertrophy and require large cohorts to reach significance.
View Article and Find Full Text PDFMotivation: Due to rapid technological advances, a wide range of different measurements can be obtained from a given biological sample including single nucleotide polymorphisms, copy number variation, gene expression levels, DNA methylation and proteomic profiles. Each of these distinct measurements provides the means to characterize a certain aspect of biological diversity, and a fundamental problem of broad interest concerns the discovery of shared patterns of variation across different data types. Such data types are heterogeneous in the sense that they represent measurements taken at different scales or represented by different data structures.
View Article and Find Full Text PDFMotivation: Time course gene expression experiments are performed to study time-varying changes in mRNA levels of thousands of genes. Statistical methods from functional data analysis (FDA) have recently gained popularity for modelling and exploring such time courses. Each temporal profile is treated as the realization of a smooth function of time, or curve, and the inferred curve becomes the basic unit of statistical analysis.
View Article and Find Full Text PDF