Two-dimensional semiconductors (2DSEM) based on van der Waals crystals offer important avenues for nanotechnologies beyond the constraints of Moore's law and traditional semiconductors, such as silicon (Si). However, their application necessitates precise engineering of material properties and scalable manufacturing processes. The ability to oxidize Si to form silicon dioxide (SiO) was crucial for the adoption of Si in modern technologies.
View Article and Find Full Text PDFMeiotic recombination between homologous chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs). Approximately 10% of these DSBs result in crossovers (COs), sites of physical DNA exchange between homologs that are critical to correct chromosome segregation. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers, the latter representing the defining marks of CO sites.
View Article and Find Full Text PDFCathodoluminescence (CL) spectroscopy is a suitable technique for studying the luminescent properties of optoelectronic materials because CL has no limitation on the excitable bandgap energy and eliminates ambiguous signals due to simple light scattering and resonant Raman scattering potentially involved in the photoluminescence spectra. However, direct CL measurements of atomically thin two-dimensional materials have been difficult due to the small excitation volume that interacts with high-energy electron beams. Herein, distinct CL signals from a monolayer hexagonal BN (hBN), namely mBN, epitaxial film grown on a graphite substrate are shown by using a CL system capable of large-area and surface-sensitive excitation.
View Article and Find Full Text PDFThe primase/polymerase PRIMPOL restarts DNA synthesis when replication is arrested by template impediments. However, we do not have a comprehensive view of how PRIMPOL-dependent repriming integrates with the main pathways of damage tolerance, REV1-dependent 'on-the-fly' lesion bypass at the fork and PCNA ubiquitination-dependent post-replicative gap filling. Guided by genome-wide CRISPR/Cas9 screens to survey the genetic interactions of PRIMPOL in a non-transformed and p53-proficient human cell line, we find that PRIMPOL is needed for cell survival following loss of the Y-family polymerases REV1 and POLη in a lesion-dependent manner, while it plays a broader role in promoting survival of cells lacking PCNA K164-dependent post-replicative gap filling.
View Article and Find Full Text PDFDuring meiotic prophase I, recombination between homologous parental chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs), each of which must be repaired with absolute fidelity to ensure genome stability of the germline. One outcome of these DSB events is the formation of Crossovers (COs), the sites of physical DNA exchange between homologs that are critical to ensure the correct segregation of parental chromosomes. However, COs account for only a small (~10%) proportion of all DSB repair events; the remaining 90% are repaired as non-crossovers (NCOs), most by synthesis dependent strand annealing.
View Article and Find Full Text PDF2D semiconductors (2SEM) can transform many sectors, from information and communication technology to healthcare. To date, top-down approaches to their fabrication, such as exfoliation of bulk crystals by "scotch-tape," are widely used, but have limited prospects for precise engineering of functionalities and scalability. Here, a bottom-up technique based on epitaxy is used to demonstrate high-quality, wafer-scale 2SEM based on the wide band gap gallium selenide (GaSe) compound.
View Article and Find Full Text PDFFerritin is a protein that stores and releases iron to prevent diseases associated with iron dysregulation in plants, animals, and bacteria. The conversion between iron-loaded holo-ferritin and empty apo-ferritin is an important process for iron regulation. To date, studies of ferritin have used either ensemble measurements to quantify the characteristics of a large number of proteins or single-molecule approaches to interrogate labeled or modified proteins.
View Article and Find Full Text PDFCrit Rev Biochem Mol Biol
August 2022
During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered.
View Article and Find Full Text PDFTransparent conductive oxides are appealing materials for optoelectronic and plasmonic applications as, amongst other advantages, their properties can be modulated by engineering their defects. Optimisation of this adjustment is, however, a complex design problem. This work examined the modification of the carrier transport properties of sputtered tin-doped indium oxide (ITO) via laser annealing in reactive environments.
View Article and Find Full Text PDFSingle-photon emitters (SPEs) in hexagonal boron nitride (hBN) have garnered increasing attention over the last few years due to their superior optical properties. However, despite the vast range of experimental results and theoretical calculations, the defect structure responsible for the observed emission has remained elusive. Here, by controlling the incorporation of impurities into hBN via various bottom-up synthesis methods and directly through ion implantation, we provide direct evidence that the visible SPEs are carbon related.
View Article and Find Full Text PDFHexagonal boron nitride (hBN) has attracted a great deal of attention as a key component in van der Waals (vdW) heterostructures, and as a wide band gap material for deep-ultraviolet devices. We have recently demonstrated plasma-assisted molecular beam epitaxy (PA-MBE) of hBN layers on substrates of highly oriented pyrolytic graphite at high substrate temperatures of ~1400 °C. The current paper will present data on the high-temperature PA-MBE growth of hBN layers using a high-efficiency radio-frequency (RF) nitrogen plasma source.
View Article and Find Full Text PDFMonolayer hexagonal boron nitride (hBN) tunnel barriers investigated using conductive atomic force microscopy reveal moiré patterns in the spatial maps of their tunnel conductance consistent with the formation of a moiré superlattice between the hBN and an underlying highly ordered pyrolytic graphite (HOPG) substrate. This variation is attributed to a periodc modulation of the local density of states and occurs for both exfoliated hBN barriers and epitaxially grown layers. The epitaxial barriers also exhibit enhanced conductance at localized subnanometer regions which are attributed to exposure of the substrate to a nitrogen plasma source during the high temperature growth process.
View Article and Find Full Text PDFLattice-matched graphene on hexagonal boron nitride is expected to lead to the formation of a band gap but requires the formation of highly strained material and has not hitherto been realized. We demonstrate that aligned, lattice-matched graphene can be grown by molecular beam epitaxy using substrate temperatures in the range 1600-1710 °C and coexists with a topologically modified moiré pattern with regions of strained graphene which have giant moiré periods up to ∼80 nm. Raman spectra reveal narrow red-shifted peaks due to isotropic strain, while the giant moiré patterns result in complex splitting of Raman peaks due to strain variations across the moiré unit cell.
View Article and Find Full Text PDFWe demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp-bonded hBN and a band gap of 5.
View Article and Find Full Text PDFGraphene grown by high temperature molecular beam epitaxy on hexagonal boron nitride (hBN) forms continuous domains with dimensions of order 20 μm, and exhibits moiré patterns with large periodicities, up to ~30 nm, indicating that the layers are highly strained. Topological defects in the moiré patterns are observed and attributed to the relaxation of graphene islands which nucleate at different sites and subsequently coalesce. In addition, cracks are formed leading to strain relaxation, highly anisotropic strain fields, and abrupt boundaries between regions with different moiré periods.
View Article and Find Full Text PDFHigh broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures is achieved by exploiting the broad-band transparency of graphene, the direct bandgap of InSe, and the favorable band line up of InSe with graphene. The photoresponsivity exceeds that for other van der Waals heterostructures and the spectral response extends from the near-infrared to the visible spectrum.
View Article and Find Full Text PDFNORE1A is a Ras-binding protein that belongs to a group of tumor suppressors known as the Ras association domain family. Their growth- and tumor-suppressive function is assumed to be dependent on association with the microtubule cytoskeleton. However, a detailed understanding of this interplay is still missing.
View Article and Find Full Text PDFWe report a technique for deforming micron-sized emulsion droplets that have ultralow interfacial tensions, by the manipulation of multiple optical trapping sites within the droplets.
View Article and Find Full Text PDFSub-micron polystyrene spheres spontaneously assemble into twodimensional arrays in the evanescent field of counterpropagating laser beams at the silica-water interface. The symmetry and dynamics of these arrays depends on the particle size and the polarization of the two laser beams. Here we describe the polarization effects for particles with diameters of 390-520 nm, which are small enough to form regular 2-D arrays yet large enough to be readily observed with an optical microscope.
View Article and Find Full Text PDFWith the rapidly expanding industrial and research applications of near-critical and supercritical technology there is a pressing need for a simple and inexpensive sensor that may be used to determine the phase coexistence regions of fluid mixtures and to establish whether a fluid system is below, at, or above, a critical point. Mechanically vibrating AT-cut quartz plates may be used to determine the product of the fluid density and viscosity of a fluid in which it is immersed, through measurement of the impedance minimum of the electrical equivalent circuit or of the corresponding frequency. The density-viscosity product changes abruptly between fluid phases and rapidly along the isotherm corresponding to the critical temperature, enabling such a plate to act as a sensor of these fluid features.
View Article and Find Full Text PDF