The objectives of innovation are often diametrically opposed to industrially standardized practices. The burgeoning field of Biofabrication represents one type of challenge that falls outside the norms of not only standardized industrial practices, but also those of Health Authorities. Biofabrication produces complex "biological products from raw materials such as living cells, molecules, extracellular matrices, and biomaterials" Mironov V, et al.
View Article and Find Full Text PDFBrain tissue loss following stroke is irreversible with current treatment modalities. The use of an acellular extracellular matrix (ECM), formulated to produce a hydrogel in situ within the cavity formed by a stroke, was investigated as a method to replace necrotic debris and promote the infiltration of host brain cells. Based on magnetic resonance imaging measurements of lesion location and volume, different concentrations of ECM (0, 1, 2, 3, 4, 8 mg/mL) were injected at a volume equal to that of the cavity (14 days post-stroke).
View Article and Find Full Text PDFRestoration of lost neuronal function after spinal cord injury (SCI) still remains a big challenge for current medicine. One important repair strategy is bridging the SCI lesion with a supportive and stimulatory milieu that would enable axonal rewiring. Injectable extracellular matrix (ECM)-derived hydrogels have been recently reported to have neurotrophic potential in vitro.
View Article and Find Full Text PDFUnlabelled: Biomaterials composed of mammalian extracellular matrix (ECM) promote constructive tissue remodeling with minimal scar tissue formation in many anatomical sites. However, the optimal shape and form of ECM scaffold for each clinical application can vary markedly. ECM hydrogels have been shown to promote chemotaxis and differentiation of neuronal stem cells, but minimally invasive delivery of such scaffold materials to the central nervous system (CNS) would require an injectable form.
View Article and Find Full Text PDFThe regenerative healing response of injured skeletal muscle is dependent upon a heterogeneous population of responding macrophages, which show a phenotypic transition from the pro-inflammatory M1 to the alternatively activated and constructive M2 phenotype. Biologic scaffolds derived from mammalian extracellular matrix (ECM) have been used for the repair and reconstruction of a variety of tissues, including skeletal muscle, and have been associated with an M2 phenotype and a constructive and functional tissue response. The mechanism(s) behind in-vivo macrophage phenotype transition in skeletal muscle and the enhanced M2:M1 ratio associated with ECM bioscaffold use in-vivo are only partially understood.
View Article and Find Full Text PDFBiologic scaffold materials are used for repair and reconstruction of injured or missing tissues. Such materials are often composed of allogeneic or xenogeneic extracellular matrix (ECM) manufactured by decellularization of source tissue, such as dermis. Dermal ECM (D-ECM) has been observed to degrade and remodel in vivo more slowly than other biologic scaffold materials, such as small intestinal submucosa (SIS-ECM).
View Article and Find Full Text PDFBiologic scaffolds composed of extracellular matrix (ECM) are commonly used to facilitate a constructive remodeling response in several types of tissue, including the esophagus. Surgical manipulation of the esophagus is often complicated by stricture, but preclinical and clinical studies have shown that the use of an ECM scaffold can mitigate stricture and promote a constructive outcome after resection of full circumference esophageal mucosa. Recognizing the potential benefits of ECM derived from homologous tissue (i.
View Article and Find Full Text PDFBiologic scaffolds composed of extracellular matrix (ECM) are commonly used repair devices in preclinical and clinical settings; however the use of these scaffolds for peripheral and central nervous system (CNS) repair has been limited. Biologic scaffolds developed from brain and spinal cord tissue have recently been described, yet the conformation of the harvested ECM limits therapeutic utility. An injectable CNS-ECM derived hydrogel capable of in vivo polymerization and conformation to irregular lesion geometries may aid in tissue reconstruction efforts following complex neurologic trauma.
View Article and Find Full Text PDFVolumetric muscle loss (VML) resulting from traumatic accidents, tumor ablation, or degenerative disease is associated with limited treatment options and high morbidity. The lack of a reliable and reproducible animal model of VML has hindered the development of effective therapeutic strategies. The present study describes a critical-sized excisional defect within the mouse quadriceps muscle that results in an irrecoverable volumetric defect.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
November 2012
The packaging and delivery of cells for cardiac regeneration has been explored using a variety biomaterials and delivery methods, but these studies often ignore one or more important design factors critical for rebuilding cardiac tissue. These include the biomaterial architecture, strength and stiffness, cell alignment, and/or incorporation of multiple cell types. In this article, we explore the combinatorial use of decellularized tissues, moldable hydrogels, patterned cell-seeding, and cell-sheet engineering and find that a combination of these methods is optimal in the recreation of transplantable cardiac-like tissue in vivo.
View Article and Find Full Text PDFBiologic scaffolds composed of mammalian extracellular matrix (ECM) are routinely used for the repair and reconstruction of injured or missing tissues in a variety of pre-clinical and clinical applications. However, the structural and functional outcomes have varied considerably. An important variable of xenogeneic biologic scaffolds is the age of the animal from which the ECM is derived.
View Article and Find Full Text PDFAcellular biologic scaffolds are commonly used to facilitate the constructive remodeling of three of the four traditional tissue types: connective, epithelial, and muscle tissues. However, the application of extracellular matrix (ECM) scaffolds to neural tissue has been limited, particularly in the central nervous system (CNS) where intrinsic regenerative potential is low. The ability of decellularized liver, lung, muscle, and other tissues to support tissue-specific cell phenotype and function suggests that CNS-derived biologic scaffolds may help to overcome barriers to mammalian CNS repair.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
April 2012
Composite polypropylene-based surgical mesh materials including various synthetic polymers and naturally occurring biomaterials have been developed to ameliorate device-associated inflammatory response and associated reduced compliance of pure polypropylene meshes. This study evaluated the histomorphologic response of three composite polypropylene-based surgical meshes, Revive™, a polycarbonate polyurethane reinforced monofilamentous polypropylene scaffold, Assure™, a polycarbonate polyurethane reinforced monofilamentous polypropylene scaffold with a resorbable anti-adhesion layer of lactide caprolactone copolymer, and Proceed™, a polypropylene mesh modified with oxidized cellulose, in a soft tissue repair model in the rat. The host inflammatory response and neotissue formation were evaluated by semiquantitative histologic scoring including the amount of cellular infiltration, angiogenesis, presence of multinucleate giant cells, fibrous connective tissue formation, and host neo-extracellular matrix deposition for up to 26 weeks.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2012
The acute and chronic host tissue response to synthetic and biologic mesh devices for abdominal hernia repair is thought to ultimately determine clinical outcomes such as adhesion formation, device shrinkage, cellular response, and neotissue formation. A meta-analysis of 38 publications was performed to assess these outcomes in six different treatment groups depending on mesh composition: polypropylene (PP), PP in combination with nonabsorbable polymers, PP in combination with absorbable polymers, non-PP polymers, non-PP in combination with absorbable polymers, and natural materials. Despite showing the least device shrinkage, meshes made entirely from PP generally showed the most adverse host tissue response.
View Article and Find Full Text PDFBackground: Infection occurs after approximately 1% of hernia repair procedures. The resistance to infection of the repair materials is therefore an important consideration. We evaluated the infection resistance of five different materials in a rat model of body wall repair, two of which, urinary bladder matrix (UBM-ECM) and Revive, were not previously evaluated in a controlled model of infection.
View Article and Find Full Text PDFBiologic scaffold materials composed of mammalian extracellular matrix (ECM) are commonly used for the repair and reconstruction of injured tissues. An important, but unexplored variable of biologic scaffolds is the age of the animal from which the ECM is prepared. The objective of the present study was to compare the structural, mechanical, and compositional properties of small intestinal submucosa (SIS)-ECM harvested from pigs that differed only in age.
View Article and Find Full Text PDF