Arterioscler Thromb Vasc Biol
December 2011
Endoplasmic reticulum (ER) stress is triggered by perturbations in ER function such as those caused by protein misfolding or by increases in protein secretion. Eukaryotic cells respond to ER stress by activating 3 ER-resident proteins, activating transcription factor-6, inositol requiring protein-1, and protein kinase RNA-like ER kinase (PERK). These proteins direct signaling pathways that relieve ER stress in a process known as the unfolded protein response (UPR).
View Article and Find Full Text PDFBackground: Achieving hemostasis in anticoagulated patients is an increasingly important clinical issue. Poly-N-acetylglucosamine (pGlcNAc) nanofibers activate platelets by β3 subunit (CD61) and the von Willebrand receptor GP1b (CD42b) integrin signaling for generation of a prothrombotic surface membrane. Recombinant coagulation factor VIIa (rFVIIa) functions in hemophilia A and B by catalyzing formation of the Xa/Va complex on the surface of activated platelets.
View Article and Find Full Text PDFBackground: Macrophages are the dominant phagocyte at sites of wound healing and inflammation, and the cellular and acellular debris encountered by macrophages can have profound effects on their inflammatory profile. Following interaction with apoptotic cells, macrophages are known to switch to an anti-inflammatory phenotype. Activated platelets, however, are also a major component of inflammatory lesions and have been proposed to be pro-inflammatory mediators.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2009
The standard treatment for severe traumatic injury is frequently compression and application of gauze dressing to the site of hemorrhage. However, while able to rapidly absorb pools of shed blood, gauze fails to provide strong surface (topical) hemostasis. The result can be excess hemorrhage-related morbidity and mortality.
View Article and Find Full Text PDFIt is well established that platelets and the intrinsic plasma coagulation pathway can be activated when blood contacts artificial surfaces. Experiments were performed to assess the effect of hemostatic poly-N-acetyl glucosamine (pGlcNAc) nanofibers on red blood cells. The pGlcNAc nanofibers, isolated from a marine diatom, interact with red blood cells (RBCs) to produce stomatocytes.
View Article and Find Full Text PDF