Laser wakefield experiments present a unique challenge in measuring the resulting electron energy properties due to the large energy range of interest, typically several 100 MeV, and the large electron beam divergence and pointing jitter >1 mrad. In many experiments the energy resolution and accuracy are limited by the convolved transverse spot size and pointing jitter of the beam. In this paper we present an electron energy spectrometer consisting of two magnets designed specifically for laser wakefield experiments.
View Article and Find Full Text PDFWe present the first direct observation of a higher-order inverse-free-electron-laser (IFEL) interaction. Interaction at the fourth, fifth, and sixth harmonics is observed from an IFEL operating at 800 nm. The harmonic spacing, relative harmonic strength, and transverse beam overlap of the interaction are all in good agreement with tracking simulations.
View Article and Find Full Text PDF