The evolution of aging requires mutations with late-life deleterious effects. Classic theories assume these mutations either have neutral (mutation accumulation) or beneficial (antagonistic pleiotropy) effects early in life, but it is also possible that they start out as mildly harmful and gradually become more deleterious with age. Despite a wealth of studies on the genetics of aging, we still have a poor understanding of how common mutations with age-specific effects are and what aging theory they support.
View Article and Find Full Text PDFGeneral evolutionary theory predicts that individuals in low condition should invest less in sexual traits compared to individuals in high condition. Whether this positive association between condition and investment also holds between young (high condition) and senesced (low condition) individuals is however less clear, since elevated investment into reproduction may be beneficial when individuals approach the end of their life. To address how investment into sexual traits changes with age, we study genes with sex-biased expression in the brain, the tissue from which sexual behaviours are directed.
View Article and Find Full Text PDFBackground: In order for aging to evolve in response to a declining strength of selection with age, a genetic architecture that allows for mutations with age-specific effects on organismal performance is required. Our understanding of how selective effects of individual mutations are distributed across ages is however poor. Established evolutionary theories assume that mutations causing aging have negative late-life effects, coupled to either positive or neutral effects early in life.
View Article and Find Full Text PDFTheory suggests sexual traits should show heightened condition-dependent expression. This prediction has been tested extensively in experiments where condition has been manipulated through environmental quality. Condition-dependence as a function of genetic quality has, however, only rarely been addressed, despite its central importance in evolutionary theory.
View Article and Find Full Text PDFMales and females often maximize fitness by pursuing different reproductive strategies, with males commonly assumed to benefit more from increased resource allocation into current reproduction. Such investment should trade off with somatic maintenance and may explain why males frequently live shorter than females. It also predicts that males should experience faster reproductive aging.
View Article and Find Full Text PDFUnderstanding the spatial scale of local adaptation and the factors associated with adaptive diversity are important objectives for ecology and evolutionary biology, and have significant implications for effective conservation and management of wild populations and natural resources. In this study, we used an environmental association analysis to identify important bioclimatic variables correlated with putatively adaptive genetic variation in a benthic marine invertebrate-the giant California sea cucumber (Parastichopus californicus)-spanning coastal British Columbia and southeastern Alaska. We used a redundancy analysis (RDA) with 3,699 single nucleotide polymorphisms (SNPs) obtained using RAD sequencing to detect candidate markers associated with 11 bioclimatic variables, including sea bottom and surface conditions, across two spatial scales (entire study area and within subregions).
View Article and Find Full Text PDFLife span differs between the sexes in many species. Three hypotheses to explain this interesting pattern have been proposed, involving different drivers: sexual selection, asymmetrical inheritance of cytoplasmic genomes, and hemizygosity of the X(Z) chromosome (the unguarded X hypothesis). Of these, the unguarded X has received the least experimental attention.
View Article and Find Full Text PDFThe evolutionary theory of aging predicts that longevity will decline via drift or age-specific tradeoffs when selection favors early life fitness. Many Drosophila melanogaster populations continually terminated at young adult ages retain surprisingly long postselection lifespans. We compiled three decades of longevity data from the Ives population, demonstrating that postselective longevity was both substantial (30 days) and temporally stable over this period.
View Article and Find Full Text PDFAdult reproductive success can account for a large fraction of male fitness, however, we know relatively little about the susceptibility of reproductive traits to mutation-accumulation (MA). Estimates of the mutational rate of decline for adult fitness and its components are controversial in Drosophila melanogaster, and post-copulatory performance has not been examined. We therefore separately measured the consequences of MA for total male reproductive success and its major pre-copulatory and post-copulatory components: mating success and sperm competitive success.
View Article and Find Full Text PDFBackground: Sex differences in the magnitude or direction of mutational effect may be important to a variety of population processes, shaping the mutation load and affecting the cost of sex itself. These differences are expected to be greatest after sexual maturity. Mutation-accumulation (MA) experiments provide the most direct way to examine the consequences of new mutations, but most studies have focused on juvenile viability without regard to sex, and on autosomes rather than sex chromosomes; both adult fitness and X-linkage have been little studied.
View Article and Find Full Text PDF