In-cell NMR spectroscopy was used to screen for drugs that disrupt the interaction between prokaryotic ubiquitin like protein, Pup, and mycobacterial proteasome ATPase, Mpa. This interaction is critical for Mycobacterium tuberculosis resistance against nitric oxide (NO) stress; interruption of this process was proposed as a mechanism to control latent infection. Three compounds isolated from the NCI Diversity set III library rescued the physiological proteasome substrate from degradation suggesting that the proteasome degradation pathway was selectively targeted.
View Article and Find Full Text PDFThis paper describes three protocols for identifying interacting surfaces on N-labeled target proteins of known structure by using in-cell NMR spectroscopy. The first protocol describes how to identify protein quinary structure interaction surfaces in prokaryotes by using cross-relaxation-induced polarization transfer, CRIPT, based in-cell NMR. The second protocol describes how to introduce labeled protein into eukaryotic (HeLa) cells via electroporation for CRIPT-based in-cell studies.
View Article and Find Full Text PDFRibosomes are present inside bacterial cells at micromolar concentrations and occupy up to 20% of the cell volume. Under these conditions, even weak quinary interactions between ribosomes and cytosolic proteins can affect protein activity. By using in-cell and in vitro NMR spectroscopy, and biophysical techniques, we show that the enzymes, adenylate kinase and dihydrofolate reductase, and the respective coenzymes, ATP and NADPH, bind to ribosomes with micromolar affinity, and that this interaction suppresses the enzymatic activities of both enzymes.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb) uses a complex 3', 5'-cyclic AMP (cAMP) signaling network to sense and respond to changing environments encountered during infection, so perturbation of cAMP signaling might be leveraged to disrupt Mtb pathogenesis. However, understanding of cAMP signaling pathways is hindered by the presence of at least 15 distinct adenylyl cyclases (ACs). Recently, the small molecule V-58 was shown to inhibit Mtb replication within macrophages and stimulate cAMP production in Mtb.
View Article and Find Full Text PDFParamagnetic NMR techniques allow for studying three-dimensional structures of RNA-protein complexes. In particular, paramagnetic relaxation enhancement (PRE) data can provide valuable information about long-range distances between different structural components. For PRE NMR experiments, oligonucleotides are typically spin-labeled using nitroxide reagents.
View Article and Find Full Text PDFParamagnetic resonance enhancement (PRE) is an NMR technique that allows studying three-dimensional structures of RNA-protein complexes in solution. RNA strands are typically spin labeled using nitroxide reagents, which provide minimal perturbation to the native structure. The current work describes an alternative approach, which is based on a Co-based probe that can be covalently attached to RNA in the vicinity of the protein's binding site using 'click' chemistry.
View Article and Find Full Text PDFRNA constitutes up to 20% of a cell's dry weight, corresponding to ∼20 mg/mL. This high concentration of RNA facilitates low-affinity protein-RNA quinary interactions, which may play an important role in facilitating and regulating biological processes. In the yeast Pichia pastoris, the level of ubiquitin-RNA colocalization increases when cells are grown in the presence of dextrose and methanol instead of methanol as the sole carbon source.
View Article and Find Full Text PDFHistorically introduced by McConkey to explain the slow mutation rate of highly abundant proteins, weak protein (quinary) interactions are an emergent property of living cells. The protein complexes that result from quinary interactions are transient and thus difficult to study biochemically in vitro. Cross-correlated relaxation-induced polarization transfer-based in-cell nuclear magnetic resonance allows the characterization of protein quinary interactions with atomic resolution inside live prokaryotic and eukaryotic cells.
View Article and Find Full Text PDFDistinct differences between how model proteins interact in-cell and in vitro suggest that the cytosol might have a profound effect in modulating protein-protein and/or protein-ligand interactions that are not observed in vitro. Analyses of in-cell NMR spectra of target proteins interacting with physiological partners are further complicated by low signal-to-noise ratios, and the long overexpression times used in protein-protein interaction studies may lead to changes in the in-cell spectra over the course of the experiment. To unambiguously resolve the principal binding mode between two interacting species against the dynamic cellular background, we analyzed in-cell spectral data of a target protein over the time course of overexpression of its interacting partner by using single-value decomposition (SVD).
View Article and Find Full Text PDF