Publications by authors named "Christopher Longoria"

The pathogenesis of COVID-19 is associated with a hyperinflammatory response; however, the precise mechanism of SARS-CoV-2-induced inflammation is poorly understood. Here, we investigated direct inflammatory functions of major structural proteins of SARS-CoV-2. We observed that spike (S) protein potently induced inflammatory cytokines and chemokines, including IL-6, IL-1β, TNFα, CXCL1, CXCL2, and CCL2, but not IFNs in human and mouse macrophages.

View Article and Find Full Text PDF

Pathogenesis of COVID-19 is associated with a hyperinflammatory response; however, the precise mechanism of SARS-CoV-2-induced inflammation is poorly understood. Here we investigated direct inflammatory functions of major structural proteins of SARS-CoV-2. We observed that spike (S) protein potently induces inflammatory cytokines and chemokines including IL-6, IL-1ß, TNFa, CXCL1, CXCL2, and CCL2, but not IFNs in human and mouse macrophages.

View Article and Find Full Text PDF

Background: Cytokines modulate fetal well-being and contribute to parturition. Their origin in fetal blood, whether maternal, placental or fetal, at the time of parturition remains unclear.

Objective: To determine fetal and placental contributions to circulating fetal cytokines by measuring umbilical arterial (UmA) and venous (UmV) concentration differences in uncomplicated term pregnancies in the absence and presence of labor.

View Article and Find Full Text PDF

Acute lung injury results in early inflammation and respiratory distress, and later fibrosis. The glycosaminoglycan hyaluronan (HA) and the Receptor for Hyaluronan-Mediated Motility (RHAMM, CD168) have been implicated in the response to acute lung injury. We hypothesized that, compared to wild type (WT) mice, RHAMM knockout (KO) mice would be protected from, whereas mice with macrophage-specific transgenic overexpression of RHAMM (TG) would have worse inflammation, respiratory distress and fibrosis after intratracheal (IT) bleomycin.

View Article and Find Full Text PDF

The pathogenesis of bronchopulmonary dysplasia (BPD), a devastating lung disease in preterm infants, includes inflammation, the mechanisms of which are not fully characterized. Here we report that the activation of the NLRP3 inflammasome is associated with the development of BPD. Hyperoxia-exposed neonatal mice have increased caspase-1 activation, IL1β and inflammation, and decreased alveolarization.

View Article and Find Full Text PDF

Background: Newborn resuscitation with 100% oxygen is associated with oxidative-nitrative stresses and inflammation. The mechanisms are unclear. Hyaluronan (HA) is fragmented to low molecular weight (LMW) by oxidative-nitrative stresses and can promote inflammation.

View Article and Find Full Text PDF

Circulating levels of high-density lipoprotein (HDL) cholesterol are inversely related to the risk of cardiovascular disease, and HDL and the HDL receptor scavenger receptor class B type I (SR-BI) initiate signaling in endothelium through src that promotes endothelial NO synthase activity and cell migration. Such signaling requires the C-terminal PDZ-interacting domain of SR-BI. Here we show that the PDZ domain-containing protein PDZK1 is expressed in endothelium and required for HDL activation of endothelial NO synthase and cell migration; in contrast, endothelial cell responses to other stimuli, including vascular endothelial growth factor, are PDZK1-independent.

View Article and Find Full Text PDF