Publications by authors named "Christopher Lockhart"

P-selectin glycoprotein ligand-1 (PSGL-1), a mucin-like surface glycoprotein, is primarily expressed on lymphoid and myeloid cells. PSGL-1 has recently been identified as an HIV restriction factor, blocking HIV infectivity mainly through virion incorporation that sterically hinders virion attachment to target cells. PSGL-1 also inhibits HIV Env incorporation into virions.

View Article and Find Full Text PDF

Background: Proteomic phenotyping can provide insights into rejection pathophysiology, novel biomarkers, and therapeutic targets.

Methods: Within the prospective, multicenter Genomic Research Alliance for Transplantation study, 181 proteins were evaluated from blood drawn at the time of endomyocardial biopsy; protein fold change, logistic regression, and pathway analyses were conducted, with protein discovery adjusted for a 5% false discovery rate.

Results: Among 104 adult heart transplant patients (31% female sex, 53% Black race, median age 52 y), 74 had no rejection, 18 developed acute cellular rejection (ACR), and 12 developed antibody-mediated rejection (AMR).

View Article and Find Full Text PDF

Several small molecule inhibitors have been designed to block binding of the Venezuelan equine encephalitis virus (VEEV) nuclear localization signal (NLS) sequence to the importin-α nuclear transport protein. To probe the inhibition mechanism on a molecular level, we used all-atom explicit water replica exchange molecular dynamics to study the binding of two inhibitors, I1 and I2, to the coreNLS peptide, representing the core fragment of the VEEV NLS sequence. Our objective was to evaluate the possibility of masking wherein binding of these inhibitors to the coreNLS occurs prior to its binding to importin-α.

View Article and Find Full Text PDF

Venezuelan equine encephalitis virus (VEEV) is a highly virulent pathogen whose nuclear localization signal (NLS) sequence from capsid protein binds to the host importin-α transport protein and blocks nuclear import. We studied the molecular mechanisms by which two small ligands, termed I1 and I2, interfere with the binding of VEEV's NLS peptide to importin-α protein. To this end, we performed all-atom replica exchange molecular dynamics simulations probing the competitive binding of the VEEV coreNLS peptide and I1 or I2 ligand to the importin-α major NLS binding site.

View Article and Find Full Text PDF

Background: Infective endocarditis of the aortic valve can result in a wide range of destructive pathology beyond the valve leaflets and annulus which require careful surgical planning to provide appropriate debridement and reconstruction. Failure to do so can result in a failure of surgical treatment, recurrent infection and cardiac failure with concomitant high morbidity and mortality.

Case Report: We describe the case of a 45-year-old male with previous patch repair of a ventricular septal defect, who was diagnosed with sub-acute bacterial endocarditis of the native aortic valve and developed a new fistula from the aorta to the right ventricular outflow tract which.

View Article and Find Full Text PDF

The 21-residue PGLa peptide is well known for antimicrobial activity attributed to its ability to compromize bacterial membranes. Using all-atom explicit solvent replica exchange molecular dynamics with solute tempering, we studied PGLa binding to a model anionic DMPC/DMPG bilayer at the high peptide:lipid ratio that promotes PGLa dimerization (a two peptides per leaflet system). As a reference we used our previous simulations at the low peptide:lipid ratio (a one peptide per leaflet system).

View Article and Find Full Text PDF

We evaluated the utility of a variant of the replica exchange method, a replica exchange with hybrid tempering (REHT), for all-atom explicit water biomolecular simulations and compared it with a more traditional replica exchange with the solute tempering (REST) algorithm. As a test system, we selected a 21-mer antimicrobial peptide PGLa binding to an anionic DMPC/DMPG lipid bilayer. Application of REHT revealed the following binding mechanism.

View Article and Find Full Text PDF

Using all-atom replica-exchange molecular dynamics simulations, we mapped the mechanisms of binding of the nuclear localization signal (NLS) sequence from Venezuelan equine encephalitis virus (VEEV) capsid protein to importin-α (impα) transport protein. Our objective was to identify the VEEV NLS sequence fragment that confers native, experimentally resolved binding to impα as well as to study associated binding energetics and conformational ensembles. The two selected VEEV NLS peptide fragments, KKPK and KKPKKE, show strikingly different binding mechanisms.

View Article and Find Full Text PDF

Free energy perturbation coupled with replica exchange with solute tempering (FEP/REST) offers a rigorous approach to compute relative free energy changes for ligands. To determine the applicability of FEP/REST for the ligands with distributed binding poses, we considered two alchemical transformations involving three putative inhibitors I0, I1, and I2 of the Venezuelan equine encephalitis virus nuclear localization signal sequence binding to the importin-α (impα) transporter protein. I0 → I1 and I0 → I2 transformations, respectively, increase or decrease the polarity of the parent molecule.

View Article and Find Full Text PDF

Although Venezuelan equine encephalitis virus (VEEV) is a life-threatening pathogen with a capacity for epidemic outbreaks, there are no FDA-approved VEEV antivirals for humans. VEEV cytotoxicity is partially attributed to the formation of a tetrameric complex between the VEEV capsid protein, the nuclear import proteins importin-α and importin-β, and the nuclear export protein CRM1, which together block trafficking through the nuclear pore complex. Experimental studies have identified small molecules from the CL6662 scaffold as potential inhibitors of the viral nuclear localization signal (NLS) sequence binding to importin-α.

View Article and Find Full Text PDF

The impact of Lys28 acetylation on Alzheimer's Aβ peptide binding to the lipid bilayer has not been previously studied, either experimentally or computationally. To probe this common post-translational modification, we performed all-atom replica exchange molecular dynamics simulations targeting binding and aggregation of acetylated acAβ25-35 peptide within the DMPC bilayer. Using the unmodified Aβ25-35 studied previously as a reference, our results can be summarized as follows.

View Article and Find Full Text PDF

Using the all-atom model and 10 μs serial replica-exchange molecular dynamics (SREMD), we investigated the binding of Alzheimer's Aβ10-40 peptides to the anionic dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) lipid bilayer. Our objective was to probe transmembrane Aβ10-40 aggregation and to test the utility of SREMD. Our results are threefold.

View Article and Find Full Text PDF

Background: At the beginning of the COVID-19 pandemic, professionals in charge of particularly vulnerable populations, such as adult congenital heart disease (ACHD) patients, were confronted with difficult decision-making. We aimed to assess changes in risk stratification and outcomes of ACHD patients suffering from COVID-19 between March 2020 and April 2021.

Methods And Results: Risk stratification among ACHD experts (before and after the first outcome data were available) was assessed by means of questionnaires.

View Article and Find Full Text PDF

Although abortion and euthanasia are highly contested issues at the heart of the culture war, the moral foundations underlying ideological differences on these issues are mostly unknown. Given that much of the extant debate is framed around the sanctity of life, we argued that the moral foundation of purity/sanctity-a core moral belief that emphasises adherence to the "natural order"-would mediate the negative relationship between conservatism and support for abortion and euthanasia. As hypothesised, results from a nation-wide random sample of adults in New Zealand (N = 3360) revealed that purity/sanctity mediated the relationship between conservatism and opposition to both policies.

View Article and Find Full Text PDF

PGLa belongs to a class of antimicrobial peptides showing strong affinity to anionic bacterial membranes. Using all-atom explicit solvent replica exchange molecular dynamics with solute tempering, we studied binding of PGLa to a model anionic dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) bilayer. Due to a strong hydrophobic moment, PGLa upon binding adopts a helical structure and two distinct bound states separated by a significant free energy barrier.

View Article and Find Full Text PDF

Using all-atom explicit solvent replica exchange molecular dynamics simulations, we studied the aggregation of oxidized (ox) Aβ25-35 peptides into dimers mediated by the zwitterionic dimyristoylphosphatidylcholine (DMPC) lipid bilayer. By comparing oxAβ25-35 aggregation with that observed for reduced and phosphorylated Aβ25-35 peptides, we elucidated plausible impact of post-translational modifications on cytotoxicity of Aβ peptides involved in Alzheimer's disease. We found that Met35 oxidation reduces helical propensity in oxAβ25-35 peptides bound to the lipid bilayer and enhances backbone fluctuations.

View Article and Find Full Text PDF

Purpose: Congenital heart disease (CHD) is the most common live birth defect and a proportion of these patients have chronic hypoxia. Chronic hypoxia leads to secondary erythrocytosis resulting in microvascular dysfunction and increased thrombosis risk. The conjunctival microcirculation is easily accessible for imaging and quantitative assessment.

View Article and Find Full Text PDF

We used all-atom replica-exchange umbrella sampling molecular dynamics simulations to investigate the partitioning of the charged tetrapeptide KLVF and its neutral apolar counterpart VVIA into the blood-brain barrier (BBB)-mimetic bilayer. Our findings allowed us to reconstruct the partitioning mechanism for these two Aβ peptide fragments. Despite dissimilar sequences, their permeation shares significant common features.

View Article and Find Full Text PDF

Using all-atom explicit water replica-exchange molecular dynamics simulations, we examined the impact of three popular force fields (FF) on the equilibrium binding of Aβ10-40 peptide to the dimyristoylgylcerophosphocholine (DMPC) bilayer. The comparison included CHARMM22 protein FF with CHARMM36 lipid FF (C22), CHARMM36m protein FF with CHARMM36 lipid FF (C36), and Amber14SB protein FF with Lipid14 lipid FF (A14). Analysis of Aβ10-40 binding to the DMPC bilayer in three FFs revealed a consensus binding mechanism.

View Article and Find Full Text PDF

Using replica exchange with solute tempering all-atom molecular dynamics, we studied the equilibrium binding of Aβ peptide to the ternary bilayer composed of an equimolar mixture of dimyristoylphosphatidylcholine (DMPC), -palmitoylsphingomyelin (PSM), and cholesterol. Binding of the same peptide to the pure DMPC bilayer served as a control. Due to significant C-terminal hydrophobic moment, binding to the ternary and DMPC bilayers promotes helical structure in the peptide.

View Article and Find Full Text PDF
Article Synopsis
  • * A total of 46 patients, averaging 32.2 years old, were analyzed, showing that while their right and left ventricular functions were preserved, their exercise tolerance was reduced to about 60% of what was estimated.
  • * The findings suggest that this cohort has a favorable long-term outcome, emphasizing the need for continuous follow-up and advanced imaging to monitor their cardiac health.
View Article and Find Full Text PDF

Using all-atom explicit solvent replica exchange molecular dynamics simulations with solute tempering, we study the effect of methionine oxidation on Aβ10-40 peptide binding to the zwitterionic DMPC bilayer. By comparing oxidized and reduced peptides, we identified changes in the binding mechanism caused by this modification. First, Met35 oxidation unravels C-terminal helix in the bound peptides.

View Article and Find Full Text PDF

Using isobaric-isothermal all-atom replica-exchange molecular dynamics (REMD) simulations, we investigated the equilibrium binding of Aβ10-40 monomers to the zwitterionic dimyristoylphosphatidylcholine (DMPC) bilayer containing cholesterol. Our previous REMD simulations, which studied binding of the same peptide to the cholesterol-free DMPC bilayer, served as a control, against which we measured the impact of cholesterol. Our findings are as follows.

View Article and Find Full Text PDF

By applying REMD simulations we have performed comparative analysis of the conformational ensembles of amino-truncated Aβ10-40 peptide produced with five force fields, which combine four protein parameterizations (CHARMM36, CHARMM22*, CHARMM22/cmap, and OPLS-AA) and two water models (standard and modified TIP3P). Aβ10-40 conformations were analyzed by computing secondary structure, backbone fluctuations, tertiary interactions, and radius of gyration. We have also calculated Aβ10-40 3JHNHα-coupling and RDC constants and compared them with their experimental counterparts obtained for the full-length Aβ1-40 peptide.

View Article and Find Full Text PDF

We have applied replica exchange with solute tempering (REST) molecular dynamics to study a short fragment of the Aβ peptide, Aβ25-35, in water and a much larger system incorporating two Aβ10-40 peptides binding to the zwitterionic dimyristoylphosphatidylcholine (DMPC) bilayer. As a control, we used traditional replica exchange molecular dynamics (REMD) applied to the same systems. Our objective was to assess the practical utility of REST simulations.

View Article and Find Full Text PDF