Publications by authors named "Christopher Lester"

The multi-level method for discrete-state systems, first introduced by Anderson and Higham (SIAM Multiscale Model Simul 10(1):146-179, 2012), is a highly efficient simulation technique that can be used to elucidate statistical characteristics of biochemical reaction networks. A single point estimator is produced in a cost-effective manner by combining a number of estimators of differing accuracy in a telescoping sum, and, as such, the method has the potential to revolutionise the field of stochastic simulation. In this paper, we present several refinements of the multi-level method which render it easier to understand and implement, and also more efficient.

View Article and Find Full Text PDF

Frustrated interactions exist throughout nature, with examples ranging from protein folding through to frustrated magnetic interactions. Whilst magnetic frustration is observed in numerous electrically insulating systems, in metals it is a rare phenomenon. The interplay of itinerant conduction electrons mediating interactions between localised magnetic moments with strong spin-orbit coupling is likely fundamental to these systems.

View Article and Find Full Text PDF

We reconsider observables for discovering and measuring the mass of a Higgs boson via its dileptonic decays h → W W* → ℓνℓν. We define an observable generalizing the transverse mass that takes into account the fact that one of the intermediate W bosons is likely to be on shell. We compare this new variable with existing ones and argue that it gives a significant improvement for discovery in the region mh < 2 mW.

View Article and Find Full Text PDF