Publications by authors named "Christopher Leist"

In this study, we explore the dynamics of grain boundaries in nanocrystalline carbon monolayers, focusing on their variation with electron beam energy and electron dose rate in a spherical and chromatic aberration-corrected transmission electron microscope. We demonstrate that a clean surface, a high-dose rate, and a 60 keV electron beam are essential for precise local control over the dynamics of grain boundaries. The structure of these linear defects has been evaluated using neural network-generated polygon mapping.

View Article and Find Full Text PDF

Aberration-corrected transmission electron microscopy enables imaging of two-dimensional (2D) materials with atomic resolution. However, dissecting the short-range-ordered structures in radiation-sensitive and amorphous 2D materials remains a significant challenge due to low atomic contrast and laborious manual evaluation. Here, we imaged carbon-based 2D materials with strong contrast, which is enabled by chromatic and spherical aberration correction at a low acceleration voltage.

View Article and Find Full Text PDF

Despite superb instrumental resolution in modern transmission electron microscopes (TEM), high-resolution imaging of organic two-dimensional (2D) materials is a formidable task. Here, we present that the appropriate selection of the incident electron energy plays a crucial role in reducing the gap between achievable resolution in the image and the instrumental limit. Among a broad range of electron acceleration voltages (300 kV, 200 kV, 120 kV, and 80 kV) tested, we found that the highest resolution in the HRTEM image is achieved at 120 kV, which is 1.

View Article and Find Full Text PDF

Metallic bonds remain one of the most important and least understood of the chemical bonds. In this study, we generated Re molecules in which the Re-Re core is unsupported by ligands. Real-time imaging of the atomic-scale dynamics of Re adsorbed on a graphitic lattice allows direct measurement of Re-Re bond lengths for individual molecules that changes in discrete steps correlating with bond order from one to four.

View Article and Find Full Text PDF