Publications by authors named "Christopher LaPensee"

Article Synopsis
  • Adrenocortical carcinoma (ACC) is a rare and deadly cancer characterized by a specific subtype called CIMP-high, which is associated with abnormal DNA methylation and mutations in β-catenin.
  • Research shows that the differentiation in CIMP-high ACC relies on a complex interaction between β-catenin and certain transcription factors, maintaining its cancerous state throughout its development.
  • Targeting the epigenetic regulator EZH2 can disrupt these interactions, leading to reduced tumor growth and presenting a potential therapeutic approach for treating β-catenin-driven cancers.
View Article and Find Full Text PDF

The Wnt signaling pathway is a critical mediator of the development and maintenance of several tissues. The adrenal cortex is highly dependent upon Wnt/β-catenin signaling for proper zonation and endocrine function. Adrenocortical cells emerge in the peripheral capsule and subcapsular cortex of the gland as progenitor cells that centripetally differentiate into steroid hormone-producing cells of three functionally distinct concentric zones that respond robustly to various endocrine stimuli.

View Article and Find Full Text PDF

The adrenal cortex is characterized by three histologically and functionally distinct zones: the outermost zona glomerulosa (zG), the intermediate zona fasciculata, and the innermost zona reticularis. Important aspects of the physiology and maintenance of the adrenocortical stem/progenitor cells have emerged in the last few years. Studies have shown that the adrenocortical cells descend from a pool of progenitors that are localized in the subcapsular region of the zG.

View Article and Find Full Text PDF

ATR-101 is a novel, oral drug candidate currently in development for the treatment of adrenocortical cancer. ATR-101 is a selective and potent inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase 1 (ACAT1), an enzyme located in the endoplasmic reticulum (ER) membrane that catalyzes esterification of intracellular free cholesterol (FC). We aimed to identify mechanisms by which ATR-101 induces adrenocortical cell death.

View Article and Find Full Text PDF

Since its discovery nearly 30 years ago, the Hedgehog (Hh) signaling pathway has been shown to be pivotal in many developmental and pathophysiological processes in several steroidogenic tissues, including the testis, ovary, adrenal cortex, and placenta. New evidence links the evolutionarily conserved Hh pathway to the steroidogenic organs, demonstrating how Hh signaling can influence their development and homeostasis and can act in concert with steroids to mediate physiological functions. In this review, we highlight the role of the components of the Hh signaling pathway in steroidogenesis of endocrine tissues.

View Article and Find Full Text PDF

Expression of the Growth Hormone (GH)-stimulated gene Socs2 (Suppressor of Cytokine Signaling 2) is mediated by the transcription activator STAT5 (Signal Transducer and Activator of Transcription 5) and the transcription repressor BCL6 (B-Cell Lymphoma 6). ChIP-Sequencing identified Cish (Cytokine-Inducible SH2-containing protein) and Bcl6 as having similar patterns of reciprocal occupancy by BCL6 and STAT5 in response to GH, though GH stimulates Cish and inhibits Bcl6 expression. The co-activator p300 occupied Socs2, Cish and Bcl6 promoters, and enhanced STAT5-mediated activation of Socs2 and Cish.

View Article and Find Full Text PDF

The transcriptional repressor B-cell Lymphoma 6 (Bcl6) was recently identified in a profile of genes regulated in adipocytes, suggesting a relationship between Bcl6 and metabolic regulation. As a representative target gene repressed by Bcl6, Suppressor of Cytokine Signaling (Socs) 2 expression was elevated in Bcl6 deficient (KO) mice, including metabolic tissues liver, adipose tissue and muscle, as well as in spleen and thymus. Bcl6 occupied the Socs2 promoter in wild-type, but not Bcl6 KO mice, suggesting direct regulation of Socs2 by Bcl6 in vivo.

View Article and Find Full Text PDF

Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos.

View Article and Find Full Text PDF

Resistance to chemotherapy is a major problem facing breast cancer patients. Cisplatin, a highly effective DNA-damaging drug, has shown only little success in breast cancer treatment. We are reporting that low nanomolar doses of bisphenol A (BPA) or estradiol antagonize cisplatin cytotoxicity in breast cancer cells, with their effects not mediated via classical estrogen receptors.

View Article and Find Full Text PDF

Resistance to chemotherapy is a major obstacle for successful treatment of breast cancer patients. Given that prolactin (PRL) acts as an anti-apoptotic/survival factor in the breast, we postulated that it antagonizes cytotoxicity by chemotherapeutic drugs. Treatment of breast cancer cells with PRL caused variable resistance to taxol, vinblastine, doxorubicin and cisplatin.

View Article and Find Full Text PDF

Epidermal growth factor (EGF) is a potent regulator of cell function in many cell types. EGF-receptor (EGFR/ErbB1)-activated Erk1/2 has been reported to activate estrogen receptor (ER) in an estrogen (E2)-independent manner. In the pituitary lactotrophs, both EGF and E2 stimulate prolactin (PRL) release, but the nature of interactions between ErbB and ERalpha signaling is unknown.

View Article and Find Full Text PDF

IL-6 is an important cytokine that regulates both immune and metabolic functions. Within adipose tissue, preadipocytes produce significant amounts of IL-6, but little is known about the factors or mechanisms that regulate IL-6 production in these cells. Using LS14, a newly developed human adipocyte cell line, our objective was to determine the mechanisms by which insulin stimulates IL-6 production and release in preadipocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Prolactin (PRL) is a hormone that helps control different body functions related to reproduction and metabolism.
  • It’s made in the pituitary gland and other body tissues and can act like a signaling messenger.
  • The review looks at how PRL works in rats, mice, and humans, and highlights that there are important differences among these animals that could affect how we understand PRL in people.
View Article and Find Full Text PDF

Prolactin (PRL), best recognized for its lactogenic activity, is also involved in the regulation of metabolic homeostasis in both mammalian and nonmammalian species. Although several mouse models have been used to study the metabolic functions of PRL, a clear-cut consensus has not emerged given the limited and often conflicting data. To clarify the role of PRL in metabolic homeostasis in males and nonlactating females, we used the PRL-deficient mouse.

View Article and Find Full Text PDF

New information about the effects of prolactin (PRL) on metabolic processes warrants re-evaluation of the overall metabolic actions of PRL. PRL affects metabolic homeostasis by regulating key enzymes and transporters that are associated with glucose and lipid metabolism in several target organs. In the lactating mammary gland, PRL increases the production of milk proteins, lactose and lipids.

View Article and Find Full Text PDF