Publications by authors named "Christopher L Welsh"

Motion of the heart has complicated in vivo applications of cardiac diffusion MRI and diffusion tensor imaging (DTI), especially in small animals such as rats where ultra-high-performance gradient sets are currently not available. Even with velocity compensation via, for example, bipolar encoding pulses, the variable shot-to-shot residual motion-induced spin phase can still give rise to pronounced artifacts. This study presents diffusion-encoding schemes that are designed to compensate for higher-order motion components, including acceleration and jerk, which also have the desirable practical features of minimal TEs and high achievable b-values.

View Article and Find Full Text PDF

The practical utility of diffusion tensor imaging, especially for 3D high-resolution spin warp experiments of ex vivo specimens, has been hampered by long acquisition times. To accelerate the acquisition, a compressed sensing framework that uses a model-based formulation to reconstruct diffusion tensor fields from undersampled k-space data was presented and evaluated. Accuracies in brain specimen white matter fiber orientation, fractional anisotropy, and mean diffusivity mapping were compared with alternative methods achievable using the same scan time via reduced image resolution, fewer diffusion encoding directions, standard compressed sensing, or asymmetrical sampling reconstruction.

View Article and Find Full Text PDF