We quantify the oceanic sink for anthropogenic carbon dioxide (CO) over the period 1994 to 2007 by using observations from the global repeat hydrography program and contrasting them to observations from the 1990s. Using a linear regression-based method, we find a global increase in the anthropogenic CO inventory of 34 ± 4 petagrams of carbon (Pg C) between 1994 and 2007. This is equivalent to an average uptake rate of 2.
View Article and Find Full Text PDFModern reef-building corals sustain a wide range of ecosystem services because of their ability to build calcium carbonate reef systems. The influence of environmental variables on coral calcification rates has been extensively studied, but our understanding of their relative importance is limited by the absence of in situ observations and the ability to decouple the interactions between different properties. We show that temperature is the primary driver of coral colony ( and ) and reef-scale calcification rates over a 2-year monitoring period from the Bermuda coral reef.
View Article and Find Full Text PDFOcean carbon monitoring efforts have increased dramatically in the past few decades in response to the need for better marine carbon cycle characterization. Autonomous pH and carbon dioxide (CO2) sensors capable of yearlong deployments are now commercially available; however, due to their strong covariance, this is the least desirable pair of carbonate system parameters to measure for high-quality, in situ, carbon-cycle studies. To expand the number of tools available for autonomous carbonate system observations, we have developed a robust surface ocean dissolved inorganic carbon (DIC) sensor capable of extended (>year) field deployments with a laboratory determined uncertainty of ±5 μmol kg(-1).
View Article and Find Full Text PDFA significant impetus for recent ocean biogeochemical research has been to better understand the ocean's role as a sink for anthropogenic CO2. In the 1990s the global carbon survey of the World Ocean Circulation Experiment (WOCE) and the Joint Global Ocean Flux Study (JGOFS) inspired the development of several approaches for estimating anthropogenic carbon inventories in the ocean interior. Most approaches agree that the total global ocean inventory of Cant was around 120 Pg C in the mid-1990s.
View Article and Find Full Text PDFThe absorption of atmospheric carbon dioxide (CO2) into the ocean lowers the pH of the waters. This so-called ocean acidification could have important consequences for marine ecosystems. To better understand the extent of this ocean acidification in coastal waters, we conducted hydrographic surveys along the continental shelf of western North America from central Canada to northern Mexico.
View Article and Find Full Text PDFToday's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms--such as corals and some plankton--will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean-carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide.
View Article and Find Full Text PDFUsing inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 +/- 19 petagrams of carbon. The oceanic sink accounts for approximately 48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 +/- 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.
View Article and Find Full Text PDFRising atmospheric carbon dioxide (CO2) concentrations over the past two centuries have led to greater CO2 uptake by the oceans. This acidification process has changed the saturation state of the oceans with respect to calcium carbonate (CaCO3) particles. Here we estimate the in situ CaCO3 dissolution rates for the global oceans from total alkalinity and chlorofluorocarbon data, and we also discuss the future impacts of anthropogenic CO2 on CaCO3 shell-forming species.
View Article and Find Full Text PDF