Purpose: Variations in the breathing characteristics, both on short term (intrafraction) and long term (interfraction) time scales, may adversely affect the radiation therapy process at all stages when treating lung tumors. Prone position has been shown to improve consistency (ie, reduced intrafraction variability) and reproducibility (ie, reduced interfraction variability) of the respiratory pattern with respect to breathing amplitude and period as a result of natural abdominal compression, with no active involvement required from the patient. The next natural step in investigating breathing-induced changes is to evaluate motion amplitude changes between prone and supine targets or organs at risk, which is the purpose of the present study.
View Article and Find Full Text PDFPurpose: Fatal radiation pneumonitis is a rare event. In recent years, higher incidences of grade 5 pneumonitis have been reported. Based on 3 cases in our clinic, a literature review was performed to assess specific clinical features and risk factors for fatal pneumonitis.
View Article and Find Full Text PDFPurpose: To develop and evaluate a method to automatically identify and quantify deformable image registration (DIR) errors between lung computed tomography (CT) scans for quality assurance (QA) purposes.
Methods: We propose a deep learning method to flag registration errors. The method involves preparation of a dataset for machine learning model training and testing, design of a three-dimensional (3D) convolutional neural network architecture that classifies registrations into good or poor classes, and evaluation of a metric called registration error index (REI) which provides a quantitative measure of registration error.
Purpose: The purpose of the study was to investigate the impact on dose distribution and radiobiological metrics of common high-dose-rate vaginal brachytherapy treatment parameters and to analyze multiinstitutional data for clinically significant impact on outcomes in early-stage endometrial cancer.
Methods And Materials: Treatment plans were created for all combinations of prescription parameters and used to quantify the dosimetric impact of each parameter and to estimate the dose delivered using common voxel-integrated radiobiological metrics. A rating system, based on risk grouping from GOG and PORTEC trials, was used to consolidate staging information into a cancer "aggressiveness" measure.
Int J Radiat Oncol Biol Phys
July 2019
Purpose: To propose a novel high-dose-rate brachytherapy applicator for balloon-based dynamic modulated brachytherapy (DMBT) for accelerated partial breast irradiation (APBI) and to demonstrate its dosimetric advantage compared to the widely used Contura applicator.
Methods And Materials: The DMBT balloon device consists of a fixed central channel enabling real-time, in vivo dosimetry and an outer motion-dynamic, adjustable-radius channel capable of moving to any angular position within the balloon. This design allows placement of dwell positions anywhere within the balloon volume, guaranteeing optimal placement and generation of the applicator and treatment plan, respectively.
Purpose: To evaluate accuracy for 2 deformable image registration methods (in-house B-spline and MIM freeform) using image pairs exhibiting changes in patient orientation and lung volume and to assess the appropriateness of registration accuracy tolerances proposed by the American Association of Physicists in Medicine Task Group 132 under such challenging conditions via assessment by expert observers.
Methods And Materials: Four-dimensional computed tomography scans for 12 patients with lung cancer were acquired with patients in prone and supine positions. Tumor and organs at risk were delineated by a physician on all data sets: supine inhale (SI), supine exhale, prone inhale, and prone exhale.
Purpose: To develop a quality control method to improve the accuracy of corresponding landmark sets used for deformable image registration (DIR) evaluation in the lung parenchyma.
Methods: An iterative workflow was developed as a method for quality assurance of landmark sets. Starting with the initial landmark set for a given image pair, a landmark-based deformation was applied to one of the images.
Purpose: Locally advanced non-small cell lung cancer (NSCLC) patients may experience dramatic changes in anatomy during radiotherapy and could benefit from adaptive radiotherapy (ART). Deformable image registration (DIR) is necessary to accurately accumulate dose during plan adaptation, but current algorithms perform poorly in the presence of large geometric changes, namely atelectasis resolution. The goal of this work was to develop a DIR framework, named Consistent Anatomy in Lung Parametric imagE Registration (CALIPER), to handle large geometric changes in the thorax.
View Article and Find Full Text PDFJ Appl Clin Med Phys
November 2016
As flattening filter-free (FFF) photon beams become readily available for treat-ment delivery in techniques such as SBRT, thorough investigation of skin dose from FFF photon beams is necessary under clinically relevant conditions. Using a parallel-plate PTW Markus chamber placed in a custom water-equivalent phantom, surface-dose measurements were taken at 2 × 2, 3 × 3, 4 × 4, 6 × 6, 8 × 8, 10 × 10, 20 × 20, and 30 × 30 cm2 field sizes, at 80, 90, and 100 cm source-to-surface distances (SSDs), and with fields defined by jaws and multileaf collimator (MLC) using multiple beam energies (6X, 6XFFF, 10X, and 10XFFF). The same set of measurements was repeated with the chamber at a reference depth of 10cm.
View Article and Find Full Text PDFPurpose: To characterize mass and density changes of lung parenchyma in non-small cell lung cancer (NSCLC) patients following midtreatment resolution of atelectasis and to quantify the impact this large geometric change has on normal tissue dose.
Methods: Baseline and midtreatment CT images and contours were obtained for 18 NSCLC patients with atelectasis. Patients were classified based on atelectasis volume reduction between the two scans as having either full, partial, or no resolution.