Publications by authors named "Christopher Korey"

The mycobacteriophage Pinkcreek (C1 subcluster) was extracted from soil collected on the Dr. Norman C. Francis Parkway Bike Trail in New Orleans, Louisiana.

View Article and Find Full Text PDF

Subcluster L3 bacteriophage Finnry was isolated from soil collected in Charleston, South Carolina, using Mycobacterium smegmatis mc155 as a host. The genome of this temperate siphovirus is 75,632 bp long (130 predicted protein-coding genes, 9 tRNAs, and no transfer-messenger RNAs), and BLASTn alignment revealed 99.86% identity with the genome of L3 mycobacteriophage Samty.

View Article and Find Full Text PDF

Subcluster F1 bacteriophage KingMidas was isolated from soil collected in Providence, Rhode Island, using mc155 as the host. The genome is 57,386 bp and contains 105 predicted protein-coding genes but no transfer-messenger RNAs or tRNAs. This siphovirus has an icosahedral head, with a genome 99.

View Article and Find Full Text PDF

Transfer RNAs (tRNA) are abundant short non-coding RNA species that are typically 76 to 90 nucleotides in length. tRNAs are directly responsible for protein synthesis by translating codons in mRNA into amino acid sequences. tRNAs were long considered as house-keeping molecules that lacked regulatory functions.

View Article and Find Full Text PDF

Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly's tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions.

View Article and Find Full Text PDF

Wolfram syndrome (WFS) is a progressive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. WFS1 and WFS2 are caused by recessive mutations in the genes Wolfram Syndrome 1 (WFS1) and CDGSH iron sulfur domain 2 (CISD2), respectively. To explore the function of CISD2, we performed genetic studies in flies with altered expression of its Drosophila orthologue, cisd2.

View Article and Find Full Text PDF

Infantile-onset neuronal ceroid lipofuscinosis (INCL) is a severe pediatric neurodegenerative disorder produced by mutations in the gene encoding palmitoyl-protein thioesterase 1 (Ppt1). This enzyme is responsible for the removal of a palmitate group from its substrate proteins, which may include presynaptic proteins like SNAP-25, cysteine string protein (CSP), dynamin, and synaptotagmin. The fruit fly, Drosophila melanogaster, has been a powerful model system for studying the functions of these proteins and the molecular basis of neurological disorders like the NCLs.

View Article and Find Full Text PDF

Although powerful bioinformatics tools are available for free on the web and are used by neuroscience professionals on a daily basis, neuroscience students are largely ignorant of them. This Neuroinformatics module weaves together several bioinformatics tools to make a comprehensive unit. This unit encompasses quantifying a phenotype through a Quantitative Trait Locus (QTL) analysis, which links phenotype to loci on chromosomes that likely had an impact on the phenotype.

View Article and Find Full Text PDF

Collaborative and international scientific efforts continue to be of increasing importance in the development of successful educational and research programs. The goal of our study abroad program, Neuroscience Seminar in Germany, is to bring this fact to light for undergraduates and make them aware of the global opportunities that exist in the neurosciences and related biological sciences. Here we discuss our experience of conducting a four-week summer study abroad course in collaboration with two universities associated with the German Graduate Schools of Neuroscience: Munich Center for Neurosciences - Ludwig-Maximilians-Universität (MCN-LMU) and Charité - Universitätsmedizin, Berlin (a joint institution of the Freie Universität and the Humboldt-Universität).

View Article and Find Full Text PDF

Infantile-onset Neuronal Ceroid Lipofuscinosis (INCL) is a severe pediatric neurodegenerative disorder produced by mutations in the gene encoding palmitoyl-protein thioesterase 1 (Ppt1). This enzyme is responsible for the removal of a palmitate post-translational modification from an unknown set of substrate proteins. To better understand the function of Ppt1 in neurons, we performed an unbiased dominant loss-of-function genetic modifier screen in Drosophila using a previously characterized Ppt1 gain-of-function system.

View Article and Find Full Text PDF

The Internet is enhancing and challenging traditional approaches to teaching undergraduate neuroscience. In addition to the new FUN-supported development of a Society for Neuroscience Portal for higher education, there is a wealth of available teaching resources currently housed on the web. This article discusses the current state of digital libraries and introduces a series of exemplary web-based classroom resources.

View Article and Find Full Text PDF

Palmitoylation is the post-translational addition of a palmitate moiety to a cysteine residue through a covalent thioester bond. The addition and removal of this modification is controlled by both palmitoyl acyl-transferases and thioesterases. Using bioinformatic analysis, we identified 22 DHHC family palmitoyl acyl-transferase homologs in the Drosophila genome.

View Article and Find Full Text PDF

Infantile neuronal ceroid lipofuscinosis (INCL) is a pediatric neurodegenerative disease caused by mutations in the human CLN1 gene. CLN1 encodes palmitoyl-protein thioesterase 1 (PPT1), suggesting an important role for the regulation of palmitoylation in normal neuronal function. To further elucidate Ppt1 function, we performed a gain-of-function modifier screen in Drosophila using a collection of enhancer-promoter transgenic lines to suppress or enhance the degeneration produced by overexpression of Ppt1 in the adult visual system.

View Article and Find Full Text PDF

The neuronal ceroid lipofuscinoses (NCLs) are neurodegenerative disorders. Nevertheless, small model organisms, including those lacking a nervous system, have proven invaluable in the study of mechanisms that underlie the disease and in studying the functions of the conserved proteins associated to each disease. From the single-celled yeast, Saccharomyces cerevisiae and Schizosaccharomyces pombe, to the worm, Caenorhabditis elegans and the fruitfly, Drosophila melanogaster, biochemical and, in particular, genetic studies on these organisms have provided insight into the NCLs.

View Article and Find Full Text PDF

Human neuronal ceroid lipofuscinoses (NCLs) are a group of genetic neurodegenerative diseases characterized by progressive death of neurons in the central nervous system (CNS) and accumulation of abnormal lysosomal storage material. Infantile NCL (INCL), the most severe form of NCL, is caused by mutations in the Ppt1 gene, which encodes the lysosomal enzyme palmitoyl-protein thioesterase 1 (Ppt1). We generated mutations in the Ppt1 ortholog of Drosophila melanogaster to characterize phenotypes caused by Ppt1 deficiency in flies.

View Article and Find Full Text PDF

Background: The infantile onset form of Neuronal Ceroid Lipofuscinoses (INCL) is the earliest and most severe form of NCL, with neurological symptoms that reflect massive neurodegeneration in the CNS and retina. INCL is due to recessively inherited mutations at the CLN1 locus. This locus encodes the evolutionarily conserved enzyme palmitoyl-protein thioesterase 1 (PPT1), indicating an essential role for protein palmitoylation in normal neuronal function.

View Article and Find Full Text PDF