We introduce a new carbazole-based zwitterionic ligand (DCzGPC) synthesized via Yamaguchi esterification which enhances the efficiency of lead halide perovskite (LHP) nanocrystals (NCs) in light-emitting diodes (LED). A facile ligand exchange of the native ligand shell, monitored by nuclear magnetic resonance (NMR), ultraviolet-visible (UV-vis), and photoluminescence (PL) spectroscopy, enables more stable and efficient LHP NCs. The improved stability is demonstrated in solution and solid-state LEDs, where the NCs exhibit prolonged luminescence lifetimes and improved luminance, respectively.
View Article and Find Full Text PDFSurface-defect passivation is key to achieving a high photoluminescence quantum yield in lead halide perovskite nanocrystals. However, in perovskite light-emitting diodes, these surface ligands also have to enable balanced charge injection into the nanocrystals to yield high efficiency and operational lifetime. In this respect, alkaline halides have been reported to passivate surface trap states and increase the overall stability of perovskite light emitters.
View Article and Find Full Text PDFWe show that the decomposition of caesium lead halide perovskite nanocrystals under continuous X-ray illumination depends on the surface ligand. For oleic acid/oleylamine, we observe a fast decay accompanied by the formation of elemental lead and halogen. Upon surface functionalization with a metal porphyrin derivative, the decay is markedly slower and involves the disproportionation of lead to Pb and Pb.
View Article and Find Full Text PDFWe correlate spatially resolved fluorescence (-lifetime) measurements with X-ray nanodiffraction to reveal surface defects in supercrystals of self-assembled cesium lead halide perovskite nanocrystals and study their effect on the fluorescence properties. Upon comparison with density functional modeling, we show that a loss in structural coherence, an increasing atomic misalignment between adjacent nanocrystals, and growing compressive strain near the surface of the supercrystal are responsible for the observed fluorescence blueshift and decreased fluorescence lifetimes. Such surface defect-related optical properties extend the frequently assumed analogy between atoms and nanocrystals as so-called quasi-atoms.
View Article and Find Full Text PDFPharmacopsychiatry
September 2003
The causal relationship between amyloid beta-peptide (Abeta) deposition and Alzheimer's disease (AD)-specific neuropathological lesions such as neurodegeneration and cortical atrophy is still not known. Mounting evidence points to alterations in cholesterol homeostasis occurring in AD brain that are probably linked to cerebral Abeta pathology. Interestingly, cholesterol not only modulates Abeta synthesis, but also controls interactions between Abeta and neuronal membranes that are regarded as decisive in the initiation of a neurotoxic cascade.
View Article and Find Full Text PDFRecent epidemiological studies revealed inhibitors of the hydroxymethylglutaryl-coenzyme A reductase, so-called statins, to be effective in lowering the prevalence of Alzheimer's disease (AD). In vitro, statins strongly reduced the cellular amyloid beta-protein load by modulating the processing of the amyloid beta precursor protein. Both observations are probably linked to cellular cholesterol homeostasis in brain.
View Article and Find Full Text PDFGrowing evidence indicates a significant linkage between Abeta and cholesterol metabolism, although the exact role of cholesterol in brain aging and in the pathogenesis of AD is still unknown. Recently, in vitro and in vivo modification of cell cholesterol and its effect on Abeta-generation became a straight focus in the research of AD. In the present study, we discretely modulated the cholesterol contents of neuronal membranes from mice of different ages in vivo and in vitro using lovastatin and methyl-beta-cyclodextrin, respectively.
View Article and Find Full Text PDF