The phenomenon of solid-state proton migration within molecular complexes containing short hydrogen bonds is investigated in two dimethylurea-oxalic acid complexes. Extensive characterisation by both X-ray and neutron diffraction shows that proton migration along the hydrogen bond can be induced in these complexes as a function of temperature. This emphasises the subtle features of the hydrogen bond potential well in such short hydrogen bonded complexes, both intrinsically and in the effect of the local crystalline environment.
View Article and Find Full Text PDFIn this study we present a combined crystallographic and computational study of a new polymorph of N,N'-dimethylurea (DMU) with P2(1)2(1)2 space group symmetry, along with a revised theoretical study of the previously known phase in its corrected space group (Fdd2). X-ray diffraction studies show crystal structures that are very similar, differing only in the relative orientation of the hydrogen-bonded molecular chains that are common to both phases. The vibrational spectra were obtained from B3LYP hybrid functional lattice dynamics calculations and compared with the experimental data for the known phase.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.