Publications by authors named "Christopher K Duesterberg"

This work extends investigations into the development and use of a kinetic model to simulate and improve the iron-catalyzed oxidation of organic compounds using Fenton's reagent. While a number of recent studies have successfully modeled the kinetics and species behavior in simple Fenton systems, none have extended and applied the model to examine the effect of operating parameters such as pH on treatment performance. The purpose of this work is to investigate the effect of pH in Fenton-based oxidation systems and to use kinetic modeling to gain insight into the reaction mechanism and speciation of the iron catalyst.

View Article and Find Full Text PDF

As Fenton (and Fenton-like) chemistry is increasingly implicated in a variety of areas and applications, an understanding of the mechanism and rates governing the system becomes relevant for a growing number of disciplines and purposes. In this work a kinetic model capable of describing species concentrations measured experimentally during the Fenton-mediated oxidation of p-hydroxybenzoic acid (pHBA) is presented and discussed. Experiments were conducted in the dark at low pH using reagent and substrate concentrations ranging from 100 microM to 2 mM.

View Article and Find Full Text PDF

In the remediation, water, and wastewater industries, an appropriate understanding of the chemical reactions governing the Fenton system allows the development of kinetic models to help design and optimize the performance and efficiency of treatment processes. In this work a rigorous kinetic model describing substrate oxidation by Fenton's reagent, following validation by comparison with experimental data, is extended and applied to provide insight and gain information regarding optimum initial conditions, solution environment, and operating regimes for the decomposition of a target contaminant. The effect of variables such as initial molar ratios of H202 to Fe(II), H202 dosing regimes, solution pH, and the presence or absence of oxygen on the rate and efficiency of contaminant degradation is presented and discussed in light of the reactions involved.

View Article and Find Full Text PDF

The increased use of Fenton systems for the treatment of contaminated waters and wastewaters necessitates the development of kinetic models capable of accurately simulating key species concentrations in order to optimize system performance and efficiency. In this work a reaction mechanism in which the hydroxyl radical is nominated to be the active oxidant in Fenton systems is used to describe the oxidation of formic acid (HCOOH) under a variety of experimental conditions. A kinetic model based on this reaction mechanism is shown to adequately describe results of experiments in which starting concentrations of H202 and HCOOH varied over 1 and 4 orders of magnitude, respectively, under both air-saturated and deaerated conditions.

View Article and Find Full Text PDF