Publications by authors named "Christopher Jay T Robidillo"

Silicon nanocrystals (SiNCs) are a promising material for applications in bioanalysis and imaging. Compared to other types of semiconductor nanocrystals, the development and characterization of energy transfer (ET) configurations with SiNCs has been far more limited, resulting in an equally limited understanding of this process and its SiNC-specific nuances. Here, we present a systematic and detailed study of ET between SiNCs and dyes.

View Article and Find Full Text PDF

Silicon nanoparticles (SiNPs) can be challenging to prepare with defined size, crystallinity, composition, and surface chemistry. As is the case for any nanomaterial, controlling these parameters is essential if SiNPs are to realize their full potential in areas such as alternative energy generation and storage, sensors, and medical imaging. Numerous teams have explored and established innovative synthesis methods, as well as surface functionalization protocols to control these factors.

View Article and Find Full Text PDF

Quantum dots (QDs) are semiconductor nanoparticles that exhibit photoluminescent properties useful for applications in the field of diagnostics and medicine. Successful implementation of these QDs for bio-imaging and bio/chemical sensing typically involves conjugation to biologically active molecules for recognition and signal generation. Unfortunately, traditional and widely studied QDs are based upon heavy metals and other toxic elements (, Cd- and Pb-based QDs), which precludes their safe use in actual biological systems.

View Article and Find Full Text PDF

Ratiometric photoluminescent detection of the toxicologically potent organophosphate ester nerve agents paraoxon (PX) and parathion (PT) using the complementary optical and chemical properties of the long Stokes shift green fluorescent protein variant, mAmetrine1.2 (mAm), and red-emitting silicon-based quantum dots (SiQDs) is reported. PX and PT selectively quench SiQD photoluminescence (PL) through a dynamic quenching mechanism, thereby, facilitating the development of a ratiometric sensor platform that shows micromolar limits of detection for PX and PT and that is unaffected by the presence of common inorganic and organic interferents.

View Article and Find Full Text PDF

This study reports the preparation of functional bioinorganic hybrids, through application of the thiol-ene reaction, that exhibit catalytic activity and photoluminescent properties from enzymes and freestanding silicon nanocrystals. Thermal hydrosilylation of 1,7-octadiene and alkene-terminated poly(ethylene oxide)methyl ether with hydride-terminated silicon nanocrystals afforded nanocrystals functionalized with alkene residues and poly(ethylene oxide) moieties. These silicon nanocrystals were conjugated with representative enzymes through the photochemical thiol-ene reaction to afford bioinorganic hybrids that are dispersible and photostable in buffer, and that exhibit photoluminescence (λ = 630 nm) and catalytic activity.

View Article and Find Full Text PDF

This study reports the preparation of functional bioinorganic hybrid materials exhibiting catalytic activity and photoluminescent properties arising from the combination of enzymes and freestanding silicon-based nanoparticles. The hybrid materials reported herein have potential applications in biological sensing/imaging and theranostics, as they combine long-lived silicon-based nanoparticle photoluminescence with substrate-specific enzymatic activity. Thermal hydrosilylation of undecenoic acid and alkene-terminated poly(ethylene oxide) with hydride-terminated silicon nanocrystals afforded nanoparticles functionalized with a mixed surface made up of carboxylic acid and poly(ethylene oxide) moieties.

View Article and Find Full Text PDF