Activated ERK translocates to the nucleus to regulate transcription. Spatiotemporal aspects of this response dictate biological consequences and are influenced by dual-specificity phosphatases (DUSPs) that can scaffold and dephosphorylate ERK. In HeLa cells, GnRH causes transient and protein kinase C (PKC)-dependent ERK activation, but termination mechanisms are unknown.
View Article and Find Full Text PDFTrends Endocrinol Metab
October 2006
Many hormones, neurotransmitters and growth factors influence their target cells by activation of mitogen-activated protein kinase cascades. The consequences of such activation reflect not only the magnitude, but also the kinetics and cellular compartmentalization of kinase activity. Gonadotropin-releasing hormone (GnRH) receptors are seven-transmembrane receptors that have undergone a period of rapidly accelerated molecular evolution in which the advent of type I mammalian GnRH receptors has been associated with the loss of the carboxyl-terminal tail, a structure present in all other seven-transmembrane receptors.
View Article and Find Full Text PDF