The oral cavity is home to a wide variety of bacterial species, both commensal, such as various streptococcal species, and pathogenic, such as , one of the main etiological agents of periodontal disease. Our understanding of how these bacteria ultimately cause disease is highly dependent upon understanding how they coexist and interact with one another in biofilm communities and the mechanisms by which biofilms are formed. Our research has demonstrated that the DNABII family of DNA-binding proteins are important components of the extracellular DNA (eDNA)-dependent matrix of bacterial biofilms and that sequestering these proteins via protein-specific antibodies results in the collapse of the biofilm structure and release of the resident bacteria.
View Article and Find Full Text PDFBiofilms play a central role in the pathobiology of otitis media (OM), bronchitis, sinusitis, conjunctivitis, and pneumonia caused by nontypeable Haemophilus influenzae (NTHI). Our previous studies show that extracellular DNA (eDNA) and DNABII proteins are essential components of biofilms formed by NTHI. The DNABII protein family includes integration host factor (IHF) and the histone-like protein HU and plays a central role in NTHI biofilm structural integrity.
View Article and Find Full Text PDFThe 2-methylcitric acid cycle (2-MCC) is a common route of propionate catabolism in microorganisms. In Salmonella enterica, the prpBCDE operon encodes most of the 2-MCC enzymes. In other organisms, e.
View Article and Find Full Text PDFK-antigen capsule, a key virulence determinant of the oral pathogen Porphyromonas gingivalis, is synthesized by proteins encoded in a series of genes transcribed as a large polycistronic message. Previously, we identified a 77-base pair inverted repeat region with the potential to form a large stem-loop structure at the 5' end of this locus. PG0121, one of two genes flanking the capsule operon, was found to be co-transcribed with the operon and to share high similarity to the DNA binding protein HU from Escherichia coli.
View Article and Find Full Text PDFStrains of Salmonella enterica serovar Typhimurium LT2 lacking a functional 2-methylcitric acid cycle (2-MCC) display increased sensitivity to propionate. Previous work from our group indicated that this sensitivity to propionate is in part due to the production of 2-methylcitrate (2-MC) by the Krebs cycle enzyme citrate synthase (GltA). Here we report in vivo and in vitro data which show that a target of the 2-MC isomer produced by GltA (2-MC(GltA)) is fructose-1,6-bisphosphatase (FBPase), a key enzyme in gluconeogenesis.
View Article and Find Full Text PDFIn bacteria, the dehydration of 2-methylcitrate to yield 2-methylaconitate in the 2-methylcitric acid cycle is catalyzed by a cofactor-less (PrpD) enzyme or by an aconitase-like (AcnD) enzyme. Bacteria that use AcnD also require the function of the PrpF protein, whose function was previously unknown. To gain insights into the function of PrpF, the three-dimensional crystal structure of the PrpF protein from the bacterium Shewanella oneidensis was solved at 2.
View Article and Find Full Text PDF