Publications by authors named "Christopher J Pelliccione"

Zero-strain electrodes, such as spinel lithium titanate (LiTiO), are appealing for application in batteries due to their negligible volume change and extraordinary stability upon repeated charge/discharge cycles. On the other hand, this same property makes it challenging to probe their structural changes during the electrochemical reaction. Herein, we report in situ studies of lithiation-driven structural transformations in LiTiO via a combination of X-ray absorption spectroscopy and ab initio calculations.

View Article and Find Full Text PDF

The structure of pristine AgFeO and phase makeup of AgFeO (a one-pot composite comprised of nanocrystalline stoichiometric AgFeO and amorphous γ-FeO phases) was investigated using synchrotron X-ray diffraction. A new stacking-fault model was proposed for AgFeO powder synthesized using the co-precipitation method. The lithiation/de-lithiation mechanisms of silver ferrite, AgFeO and AgFeO were investigated using ex situ, in situ, and operando characterization techniques.

View Article and Find Full Text PDF

The iron oxide magnetite, FeO, is a promising conversion type lithium ion battery anode material due to its high natural abundance, low cost and high theoretical capacity. While the close packing of ions in the inverse spinel structure of FeO enables high energy density, it also limits the kinetics of lithium ion diffusion in the material. Nanosizing of FeO to reduce the diffusion path length is an effective strategy for overcoming this issue and results in improved rate capability.

View Article and Find Full Text PDF

Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy.

View Article and Find Full Text PDF

Aggregation of nanosized materials in composite lithium-ion-battery electrodes can be a significant factor influencing electrochemical behavior. In this study, aggregation was controlled in magnetite, Fe3O4, composite electrodes via oleic acid capping and subsequent dispersion in a carbon black matrix. A heat treatment process was effective in the removal of the oleic acid capping agent while preserving a high degree of Fe3O4 dispersion.

View Article and Find Full Text PDF

The combination of ex situ X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements on 2D layered copper birnessite cathode materials for lithium ion battery applications provides detailed insight into both bulk-crystalline and localized atomic structural changes resulting from electrochemically driven lithium insertion and de-insertion. Copper birnessite electrodes that had been galvanostatically discharged and charged were measured with XRD to determine the accompanying long-range crystalline structure changes, while Mn and Cu K-edge XAS measurements provided a detailed view of the Mn and Cu oxidation state changes along with variations of the local neighboring atom environments around the Mn and Cu centers. While not detectable with XRD spectra, through XAS measurements it was determined that the copper ions (Cu(2+)) are reduced to form amorphous nano-sized Cu metal, and can be oxidized back to Cu(2+).

View Article and Find Full Text PDF

This study presents a new approach to the formulation of functional nanofluids with high solid loading and low viscosity while retaining the surface activity of nanoparticles, in particular, their electrochemical response. The proposed methodology can be applied to a variety of functional nanomaterials and enables exploration of nanofluids as a medium for industrial applications beyond heat transfer fluids, taking advantage of both liquid behavior and functionality of dispersed nanoparticles. The highest particle concentration achievable with pristine 25 nm titania (TiO2) nanoparticles in aqueous electrolytes (pH 11) is 20 wt %, which is limited by particle aggregation and high viscosity.

View Article and Find Full Text PDF