Publications by authors named "Christopher J Moody"

Geldanamycin remains a driver in the medicinal chemistry of heat shock protein 90 (Hsp90) inhibition, even half a century after its original isolation from nature. This Perspective focuses on the properties of the benzoquinone ring of the natural product that enable a range of functionalization reactions to take place. Therefore, inherent reactivity at C-17, where the methoxy group serves as a vinylogous ester, and at C-19 that demonstrates nucleophilic, enamide-type character toward electrophiles, and also as a conjugate acceptor to react with nucleophiles, has facilitated the synthesis of semisynthetic derivatives.

View Article and Find Full Text PDF

Functionalised tetrahydropyran and spirooxepane scaffolds were prepared utilising an iodoetherification strategy and elaborated to demonstrate their potential use in library synthesis. The iodoetherification products could be readily transformed to the corresponding azides that could be further functionalised via copper-catalysed azide-alkyne cycloaddition or reduction to the amine. The lead-likeness and three-dimensionality of the scaffolds were examined and compared to commercial libraries.

View Article and Find Full Text PDF

We describe the design, organic synthesis, and characterization, including X-ray crystallography, of a series of novel analogues of the clinically used antitumor agent temozolomide, together with their in vitro biological evaluation. The work has resulted in the discovery of a new series of anticancer imidazotetrazines that offer the potential to overcome the resistance mounted by tumors against temozolomide. The rationally designed compounds that incorporate a propargyl alkylating moiety and a thiazole ring as isosteric replacement for a carboxamide, are readily synthesized (gram-scale), exhibit defined solid-state structures, and enhanced growth-inhibitory activity against human tumor cell lines, including MGMT-expressing and MMR-deficient lines, molecular features that confer tumor resistance.

View Article and Find Full Text PDF

Here, we describe the anticancer activity of our novel bis-triazoles MS47 and MS49, developed previously as G-quadruplex stabilizers, focusing specifically upon the human melanoma MDA-MB-435 cell line. At the National Cancer Institute (NCI), USA, bis-triazole MS47 (NCS 778438) was evaluated against a panel of sixty human cancer cell lines, and showed selective, distinct multi-log differential patterns of activity, with GI50 and LC50 values in the sub-micromolar range against human cancer cells. MS47 showed highly selective cytotoxicity towards human melanoma, ovarian, CNS and colon cancer cell lines; in contrast, the leukemia cell lines interestingly showed resistance to MS47 cytotoxic activity.

View Article and Find Full Text PDF

The successful application of fragment-based drug discovery strategy for the efficient synthesis of phenoxy- or phenylamino-2-phenyl-benzofuran, -benzoxazole and -benzothiazole quinones is described. Interestingly, in the final step of the synthesis of the target compounds, unusual results were observed on the regiochemistry of the reaction of bromoquinones with phenol and aniline. A theoretical study was carried out for better understanding the factors that control the regiochemistry of these reactions.

View Article and Find Full Text PDF

The thioredoxin (Trx) system, a key antioxidant pathway, represents an attractive target for cancer therapy. This study investigated the chemotherapeutic and radiosensitising effects of a novel Trx reductase (TrxR) inhibitor, IQ10, on brain cancer cells and the underlying mechanisms of action. Five brain cancer cell lines and a normal cell type were used.

View Article and Find Full Text PDF

Diazophosphonates, readily prepared from α-ketophosphonates by oxidation of the corresponding hydrazones in batch or in flow, are useful partners in 1,3-dipolar cycloaddition reactions to alkynes to give N-H pyrazoles, including the first intramolecular examples of such a process. The phosphoryl group imbues a number of desirable properties into the diazo 1,3-dipole. The electron-withdrawing nature of the phosphoryl stabilizes the diazo compound making it easier to handle, whilst the ability of the phosphoryl group to migrate readily in a [1,5]-sigmatropic rearrangement enables its transfer from C to N to aromatize the initial cycloadduct, and hence its facile removal from the final pyrazole product.

View Article and Find Full Text PDF

Radiotherapy is an effective treatment modality for breast cancer but, unfortunately, not all patients respond fully with a significant number experiencing local recurrences. Overexpression of thioredoxin and thioredoxin reductase has been reported to cause multidrug and radiation resistance - their inhibition may therefore improve therapeutic efficacy. Novel indolequinone compounds have been shown, in pancreatic cancer models, to inhibit thioredoxin reductase activity and exhibit potent anticancer activity.

View Article and Find Full Text PDF

A late-stage functionalization of the aromatic ring in amino acid derivatives is described. The key step is a copper-catalysed diversification of a boronate ester by amination (Chan-Lam reaction) that can be carried out on a complex β-aryl-β-amino acid scaffold. This not only considerably extends the substrate scope of amination partners, but also delivers an array of potent and selective integrin inhibitors as potential treatment agents of idiopathic pulmonary fibrosis (IPF).

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a grade IV astrocytoma, which is the most aggressive form of brain tumor. The standard of care for this disease includes surgery, radiotherapy and temozolomide (TMZ) chemotherapy. Poor accumulation of TMZ at the tumor site, tumor resistance to drug, and dose-limiting bone marrow toxicity eventually reduce the success of this treatment.

View Article and Find Full Text PDF

Glioblastoma multiforme is the most common and lethal brain tumour-type. The current standard of care includes Temozolomide (TMZ) chemotherapy. However, inherent and acquired resistance to TMZ thwart successful treatment.

View Article and Find Full Text PDF

The antioxidant natural product sulforaphane (SFN) is an oil with poor aqueous and thermal stability. Recent work with SFN has sought to optimize methods of formulation for oral and topical administration. Herein we report the design of new analogs of SFN with the goal of improving stability and drug-like properties.

View Article and Find Full Text PDF

A series of 3-(benzyl-substituted)-imidazo[5,1-]-1,2,3,5-tetrazines () and related derivatives with 3-heteromethyl groups has been synthesised and screened for growth-inhibitory activity against two pairs of glioma cell lines with temozolomide-sensitive and -resistant phenotypes dependent on the absence/presence of the DNA repair protein -methylguanine-DNA methyltransferase (MGMT). In general the compounds had low inhibitory activity with GI values >50 μM against both sets of cell lines. Two silicon-containing derivatives, the TMS-methylimidazotetrazine () and the SEM-analogue (), showed interesting differences: compound () had a profile very similar to that of temozolomide with the MGMT+ cell lines being 5 to 10-fold more resistant than MGMT- isogenic partners; the SEM-substituted compound () showed potency across all cell lines irrespective of their MGMT status.

View Article and Find Full Text PDF
Article Synopsis
  • A new theory proposes that latrunculin A, a natural compound, may transform into a new compound called thiopyrone CTP-431 when stored in methanol for a long time.
  • The process involves the opening of latrunculin A's hemiacetal, leading to a series of chemical reactions, including dehydration and an intramolecular Diels-Alder reaction.
  • Evidence is provided to support the idea that the rearrangement from thiazolidinone to thiopyrone can actually happen experimentally.
View Article and Find Full Text PDF

A series of highly substituted tetrahydrofurans (THFs), decorated with modifiable 2-aryl, 3-carboxy and 4-amino substituents, has been prepared for biological evaluation within the European Lead Factory. Diastereoselective reductive amination of pre-functionalised 4-oxofurans, readily prepared from cinnamate esters via oxa-Michael/Dieckmann annulation, provided the requisite THF cores on gram scale with three contiguous stereocentres, including full substitution at C-3. In a second series, a pyrrolidine ring was fused to the same oxofuran scaffold via an intramolecular reductive amination, inverting the configuration at C-4 relative to the other ring substituents.

View Article and Find Full Text PDF

1,2-Diazetidin-3-ones are readily accessible, small ring scaffolds that upon functionalization have the potential to produce diverse 3-dimensional structures for drug discovery. Thus, treatment of diazo hydrazides, obtained from simple hydrazides and malonyl half ester derivatives, followed by diazo transfer, with catalytic amounts of rhodium(II) acetate dimer results in intramolecular carbenoid N-H insertion to give 1,2-diazetidin-3-ones. Although subsequent functionalization reactions could be hampered by the lability of the 4-membered ring, a wide range of new derivatives was available by deprotection at N-1, and subsequent amide or urea formation.

View Article and Find Full Text PDF

A spirocyclic, sp-atom rich oxetane-containing scaffold was synthesised in just two steps via a gold catalysed propargylic alcohol rearrangement. The key gold cyclisation can be undertaken on a 40 g scale allowing the preparation of 419 lead-like compounds based on the scaffold for the European Lead Factory.

View Article and Find Full Text PDF

A new route to spiro-oxetanes, potential scaffolds for drug discovery, is described. The route is based on the selective 1,4-C-H insertion reactions of metallocarbenes, generated from simple carbonyl precursors in flow or batch mode, to give spiro-β-lactones that are rapidly converted into spiro-oxetanes. The three-dimensional and lead-like properties of spiro-oxetanes are illustrated by the conversion of the 1-oxa-7-azaspiro[3,5]nonane scaffold into a range of functionalized derivatives.

View Article and Find Full Text PDF

The cyclic dodecapeptides wewakazole and wewakazole B have been synthesized by a divergent strategy via a common tris-proline containing oxazole octapeptide and two separate bis-oxazole containing tetrapeptide units, followed by peptide coupling and macrocyclization. The three oxazole amino acid fragments are readily accessible by rhodium(II)-catalyzed amide N-H insertion of diazocarbonyl compounds, or by the cycloaddition of rhodium carbenoids with nitriles.

View Article and Find Full Text PDF

Functionalised tetrahydropyran scaffolds were prepared using a tethered enol-ether Prins cyclisation and elaborated to show their potential use in library synthesis. The key 4-hydroxytetrahydropyran scaffold could be readily manipulated to the 4-azidotetrahydropyran that could be elaborated via copper catalysed azide-alkyne cycloaddition or by reduction to the amine, to provide sp-rich scaffolds useful for drug discovery.

View Article and Find Full Text PDF

The structurally unique polyazole antibiotic goadsporin contains six heteroaromatic oxazole and thiazole rings integrated into a linear array of amino acids that also contains two dehydroalanine residues. An efficient total synthesis of goadsporin is reported in which the key steps are the use of rhodium(II)-catalyzed reactions of diazocarbonyl compounds to generate the four oxazole rings, which demonstrates the power of rhodium carbene chemistry in organic chemical synthesis.

View Article and Find Full Text PDF

Annulin B, isolated from the marine hydroid isolated from Garveia annulata, is a potent inhibitor of the tryptophan catabolizing enzyme indoleamine-2,3-dioxygenase (IDO). A synthesis of the reported pyranonaphthoquinone structure is described, in which the key step is a regioselective Diels-Alder reaction between a pyranobenzoquinone dienophile and a silyl ketene acetal diene.

View Article and Find Full Text PDF

A short formal total synthesis of the marine natural product diazonamide A is described. The route is based on indole oxidative rearrangement, and a number of options were investigated involving migration of tyrosine or oxazole fragments upon oxidation of open chain or macrocyclic precursors. The final route proceeds from 7-bromoindole by sequential palladium-catalysed couplings of an oxazole fragment at C-2, followed by a tyrosine fragment at C-3.

View Article and Find Full Text PDF

The imidazole ring is widespread in biologically active compounds, and hence imidazole-containing scaffolds are useful starting points for drug discovery programmes. We report the synthesis of a series of novel imidazole-containing compounds fused with either phenanthrene or phenanthroline, which show enhanced growth inhibitory potency against human colon, breast and melanoma cancer cell lines, as well as evidence of inhibition of the molecular chaperone heat shock protein 70 (Hsp70) pathway in cells, as shown by depletion of downstream oncogenic client proteins of the Hsp90 chaperone pathway, and induction of apoptosis.

View Article and Find Full Text PDF

A highly stereoselective route to functionalized pyrrolidines by the metal-catalyzed diverted N-H insertion of a range of diazocarbonyl compounds with β-aminoketone derivatives is described. A number of catalysts (rhodium(II) carboxylate dimers, copper(I) triflate, and an iron(III) porphyrin) are shown to promote the process under mild conditions to give a wide range of highly substituted proline derivatives. The reaction starts as a metallocarbene N-H insertion but is diverted by an intermolecular aldol reaction.

View Article and Find Full Text PDF