Publications by authors named "Christopher J Lengner"

Article Synopsis
  • Ultra-high dose rate FLASH radiotherapy shows promise in reducing toxicity to normal tissues compared to standard proton radiotherapy while maintaining effective anti-tumor responses.
  • Research demonstrated that FLASH treatment led to faster recovery and improved survival in mice after whole-abdomen irradiation, linked to enhanced proliferation of stem and progenitor cells for tissue regeneration.
  • The benefits of FLASH are attributed to changes in immune and stromal cell signaling, particularly involving TGF-β and IFN-I pathways, which differ significantly from those activated in standard radiotherapy, thus minimizing side effects.
View Article and Find Full Text PDF

The initiation and progression of cancer are intricately linked to the tumor microenvironment (TME). Understanding the function of specific cancer-TME interactions poses a major challenge due in part to the complexity of the in vivo microenvironment. Here we predict cancer-TME interactions from single cell transcriptomic maps of both human colorectal cancers (CRCs) and mouse CRC models, ask how these interactions are altered in human tumor organoid (tumoroid) cultures, and functionally recapitulate human myeloid-carcinoma interactions in vitro.

View Article and Find Full Text PDF

Inflammation of the gastrointestinal tract is a prevalent pathology in diseases such as inflammatory bowel disease (IBD). Currently, there are no therapies to prevent IBD, and available therapies to treat IBD are often sub-optimal. Thus, an unmet need exists to better understand the molecular mechanisms underlying intestinal tissue responses to damage and regeneration.

View Article and Find Full Text PDF

Objective: Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with the majority of cases initiated by inactivation of the APC tumour suppressor. This results in the constitutive activation of canonical WNT pathway transcriptional effector ß-catenin, along with induction of WNT feedback inhibitors, including the extracellular palmitoleoyl-protein carboxylesterase NOTUM which antagonises WNT-FZD receptor-ligand interactions. Here, we sought to evaluate the effects of NOTUM activity on CRC as a function of driver mutation landscape.

View Article and Find Full Text PDF

Neural crest (NC) is a unique vertebrate cell type arising from the border of the neural plate and epidermis that gives rise to diverse tissues along the entire body axis. Roberto Mayor and colleagues have made major contributions to our understanding of NC induction, delamination, and migration. We report that a truncating mutation of the classical tumor suppressor ( disrupts craniofacial development in zebrafish larvae, with a marked reduction in the cranial neural crest (CNC) cells that contribute to mandibular and hyoid pharyngeal arches.

View Article and Find Full Text PDF

The RNA-binding protein LIN28B is overexpressed in over 30% of patients with colorectal cancer (CRC) and is associated with poor prognosis. In the present study, we unraveled a potentially novel mechanism by which LIN28B regulates colonic epithelial cell-cell junctions and CRC metastasis. Using human CRC cells (DLD-1, Caco-2, and LoVo) with either knockdown or overexpression of LIN28B, we identified claudin 1 (CLDN1) tight junction protein as a direct downstream target and effector of LIN28B.

View Article and Find Full Text PDF

Background & Aims: Dyskeratosis congenita (DC) is a telomere biology disorder caused primarily by mutations in the DKC1 gene. Patients with DC and related telomeropathies resulting from premature telomere dysfunction experience multiorgan failure. In the liver, DC patients present with nodular hyperplasia, steatosis, inflammation, and cirrhosis.

View Article and Find Full Text PDF

Understanding how macroautophagy/autophagy contributes to tissue homeostasis is essential for understanding organismal health. The intestinal epithelium is an ideal model to define mechanisms that regulate tissue homeostasis because it houses well-defined populations of intestinal stem cells. Active intestinal stem cells (a-ISCs) are defined by their active cycling and self-renewal during homeostasis, which supports continual tissue turnover in vivo.

View Article and Find Full Text PDF

Dysregulation of signaling that governs self-renewal and differentiation of intestinal stem cells (ISCs) is a major cause of colorectal cancer (CRC) initiation and progression. qRT-PCR, western blotting, hybridization, immunohistochemistry and immunofluorescence assays were used to detect the expression levels of MEX3A, KLF4 and E2F3 in CRC tissues. The biological functions of MEX3A were studied using knockout (KO) and intestinal epithelium specific conditional knockout (cKO) mice, AOM-DSS mouse colorectal tumor model, Apc floxed mouse tumor model and intestinal and tumor organoids.

View Article and Find Full Text PDF

The intestinal epithelium exhibits a rapid and efficient regenerative response to injury. Emerging evidence supports a model where plasticity of differentiated cells, particularly those in the secretory lineages, contributes to epithelial regeneration upon ablation of injury-sensitive stem cells. However, such facultative stem cell activity is rare within secretory populations.

View Article and Find Full Text PDF

Dll1+ breast cancer cells activate Notch signaling in cancer-associated fibroblasts that increases Wnt ligand secretion and leads to β-catenin-driven radioresistance and metastasis, opening new therapeutic avenues for breast cancer.

View Article and Find Full Text PDF

Dyskeratosis congenita (DC) is a rare genetic disorder characterized by deficiencies in telomere maintenance leading to very short telomeres and the premature onset of certain age-related diseases, including pulmonary fibrosis (PF). PF is thought to derive from epithelial failure, particularly that of type II alveolar epithelial (AT2) cells, which are highly dependent on Wnt signaling during development and adult regeneration. We use human induced pluripotent stem cell-derived AT2 (iAT2) cells to model how short telomeres affect AT2 cells.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is among the most frequent forms of cancer, and new strategies for its prevention and therapy are urgently needed. Here we identify a metabolite signalling pathway that provides actionable insights towards this goal. We perform a dietary screen in autochthonous animal models of CRC and find that ketogenic diets exhibit a strong tumour-inhibitory effect.

View Article and Find Full Text PDF

Autism spectrum disorders (ASDs) are common neurodevelopmental disorders characterized by deficits in social interactions and communication, restricted interests, and repetitive behaviors. Despite extensive study, the molecular targets that control ASD development remain largely unclear. Here, we report that the dormancy of quiescent neural stem cells (qNSCs) is a therapeutic target for controlling the development of ASD phenotypes driven by Shank3 deficiency.

View Article and Find Full Text PDF

Activation of Wnt signaling is among the earliest events in colon cancer development. It is achieved either via activating mutations in the gene encoding β-catenin, the key transcription factor in the Wnt pathway, or most commonly by inactivating mutations affecting APC, a major β-catenin binding partner and negative regulator. However, our analysis of recent Pan Cancer Atlas data revealed that mutations significantly co-occur with those affecting Wnt receptor complex components (e.

View Article and Find Full Text PDF

The underpinnings of cancer metastasis remain poorly understood, in part due to a lack of tools for probing their emergence at high resolution. Here we present macsGESTALT, an inducible CRISPR-Cas9-based lineage recorder with highly efficient single-cell capture of both transcriptional and phylogenetic information. Applying macsGESTALT to a mouse model of metastatic pancreatic cancer, we recover ∼380,000 CRISPR target sites and reconstruct dissemination of ∼28,000 single cells across multiple metastatic sites.

View Article and Find Full Text PDF

Skeletal progenitor/stem cells (SSCs) play a critical role in postnatal bone growth and maintenance. Telomerase (Tert) activity prevents cellular senescence and is required for maintenance of stem cells in self-renewing tissues. Here we investigated the role of mTert-expressing cells in postnatal mouse long bone and found that mTert expression is enriched at the time of adolescent bone growth.

View Article and Find Full Text PDF

The adipokine leptin regulates energy homeostasis through ubiquitously expressed leptin receptors. Leptin has a number of major signaling targets in the brain, including cells of the anterior pituitary (AP). We have previously reported that mice lacking leptin receptors in AP somatotropes display growth hormone (GH) deficiency, metabolic dysfunction, and adult-onset obesity.

View Article and Find Full Text PDF

Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming.

View Article and Find Full Text PDF

MTORC1 activity is critical for tissue regeneration in multiple organs and contexts. In this issue of Developmental Cell, Miao et al. describe upstream regulators of mTORC1 activity which promote paligenosis, a process where mature cells de-differentiate to acquire stem cell activity in the face of injury.

View Article and Find Full Text PDF

A certain number of epithelial cells in intestinal crypts are DNA damage resistant and contribute to regeneration. However, the cellular mechanism underlying intestinal regeneration remains unclear. Using lineage tracing, we show that cells marked by an Msi1 reporter (Msi1) are right above Lgr5 cells in intestinal crypts and exhibit DNA damage resistance.

View Article and Find Full Text PDF

Cell migration is driven by pushing and pulling activities of the actin cytoskeleton, but migration directionality is largely controlled by microtubules. This function of microtubules is especially critical for neuron navigation. However, the underlying mechanisms are poorly understood.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: