Publications by authors named "Christopher J Law"

White chick hatchery disease is an emerging disease of broiler chicks with which the virus, chicken astrovirus, has been associated. Adult birds typically show no obvious clinical signs of infection, although some broiler breeder flocks have experienced slight egg drops. Substantial decreases in hatching are experienced over a two-week period, with an increase in mid-to-late embryo deaths, chicks too weak to hatch and pale, runted chicks with high mortality.

View Article and Find Full Text PDF

Background: Plasmodium species are entirely dependent upon their host as a source of essential iron. Although it is an indispensable micronutrient, oxidation of excess ferrous iron to the ferric state in the cell cytoplasm can produce reactive oxygen species that are cytotoxic. The malaria parasite must therefore carefully regulate the processes involved in iron acquisition and storage.

View Article and Find Full Text PDF

Oligodeoxynucleotides incorporating internucleotide phosphoroselenolate linkages have been prepared under solid-phase synthesis conditions using dimer phosphoramidites. These dimers were constructed following the high yielding Michaelis-Arbuzov (M-A) reaction of nucleoside -phosphonate derivatives with 5'-deoxythymidine-5'-selenocyanate and subsequent phosphitylation. Efficient coupling of the dimer phosphoramidites to solid-supported substrates was observed under both manual and automated conditions and required only minor modifications to the standard DNA synthesis cycle.

View Article and Find Full Text PDF

Multidrug resistance is principally a consequence of the active transport of drugs out of the cell by proteins that are integral membrane transporters. In the following review, we present a synthesis of current understanding of the Escherichia coli multidrug resistance transporter, MdtM, a 410 amino acid residue protein that belongs to the large and ubiquitous major facilitator superfamily (MFS).

View Article and Find Full Text PDF

Vacuolar iron transporters (VITs) are a poorly understood family of integral membrane proteins that can function in iron homeostasis via sequestration of labile Fe into vacuolar compartments. Here we report on the heterologous overexpression and purification of PfVIT, a vacuolar iron transporter homologue from the human malaria-causing parasite Plasmodium falciparum. Use of synthetic, codon-optimised DNA enabled overexpression of functional PfVIT in the inner membrane of Escherichia coli which, in turn, conferred iron tolerance to the bacterial cells.

View Article and Find Full Text PDF

Multidrug resistance arising from the activity of integral membrane transporter proteins presents a global public health threat. In bacteria such as Escherichia coli, transporter proteins belonging to the major facilitator superfamily make a considerable contribution to multidrug resistance by catalysing efflux of myriad structurally and chemically different antimicrobial compounds. Despite their clinical relevance, questions pertaining to mechanistic details of how these promiscuous proteins function remain outstanding, and the role(s) played by individual amino acid residues in recognition, binding and subsequent transport of different antimicrobial substrates by multidrug efflux members of the major facilitator superfamily requires illumination.

View Article and Find Full Text PDF

Michaelis-Arbuzov reactions of S-aryl disulfide derivatives of 3'-thiothymidine or 5'-thioadenosine with tris(trimethylsilyl) phosphite proceeded in high yields to the corresponding phosphorothiolate monoesters. Subsequent hydrolytic desilylation and phosphate coupling were effected in one-pot using liquid-assisted grinding in a vibration ball mill. Novel 3',5'- and 5',5'-pyrophosphorothiolate-linked dinucleoside cap analogues were thereby prepared.

View Article and Find Full Text PDF

Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS). Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography.

View Article and Find Full Text PDF

Resistance to high concentrations of bile salts in the human intestinal tract is vital for the survival of enteric bacteria such as Escherichia coli. Although the tripartite AcrAB-TolC efflux system plays a significant role in this resistance, it is purported that other efflux pumps must also be involved. We provide evidence from a comprehensive suite of experiments performed at two different pH values (7.

View Article and Find Full Text PDF

Background: In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis.

View Article and Find Full Text PDF

Objectives: Quaternary ammonium compounds (QACs) are used extensively as biocides and their misuse may be contributing to the development of bacterial resistance. Although the major intrinsic resistance to QACs of Gram-negative bacteria is mediated by the action of tripartite multidrug transporters of the resistance-nodulation-division family, we aimed to test if the promiscuity of the recently characterized major facilitator superfamily multidrug transporter, MdtM, from Escherichia coli enabled it also to function in the efflux of QACs.

Methods: The ability of the major facilitator mdtM gene product, when overexpressed from multicopy plasmid, to protect E.

View Article and Find Full Text PDF

Control of fasciolosis is threatened by the development of anthelmintic resistance. Enhanced triclabendazole (TCBZ) efflux by ABC transporters such as P-glycoprotein (Pgp) has been implicated in this process. A putative full length cDNA coding for a Pgp expressed in adult Fasciola hepatica has been constructed and used to design a primer set capable of amplifying a region encoding part of the second nucleotide binding domain of Pgp when genomic DNA was used as a template.

View Article and Find Full Text PDF

Multidrug resistance (MDR) occurs when bacteria simultaneously acquire resistance to a broad spectrum of structurally dissimilar compounds to which they have not previously been exposed. MDR is principally a consequence of the active transport of drugs out of the cell by proteins that are integral membrane transporters. We characterised and purified the putative Escherichia coli MDR transporter, MdtM, a 410 amino acid residue protein that belongs to the large and ubiquitous major facilitator superfamily.

View Article and Find Full Text PDF

Major facilitators represent the largest superfamily of secondary active transporter proteins and catalyze the transport of an enormous variety of small solute molecules across biological membranes. However, individual superfamily members, although they may be architecturally similar, exhibit strict specificity toward the substrates they transport. The structural basis of this specificity is poorly understood.

View Article and Find Full Text PDF

Sertraline and fluoxetine are selective serotonin re-uptake inhibitors (SSRIs) that are widely prescribed to treat depression. They exert their effects by inhibiting the presynaptic plasma membrane serotonin transporter (SERT). All SSRIs possess halogen atoms at specific positions, which are key determinants for the drugs' specificity for SERT.

View Article and Find Full Text PDF

The major facilitator superfamily (MFS) represents the largest group of secondary active membrane transporters, and its members transport a diverse range of substrates. Recent work shows that MFS antiporters, and perhaps all members of the MFS, share the same three-dimensional structure, consisting of two domains that surround a substrate translocation pore. The advent of crystal structures of three MFS antiporters sheds light on their fundamental mechanism; they operate via a single binding site, alternating-access mechanism that involves a rocker-switch type movement of the two halves of the protein.

View Article and Find Full Text PDF

Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (P(i)) down its concentration gradient.

View Article and Find Full Text PDF

Secondary active transport of substrate across the cell membrane is crucial to many cellular and physiological processes. The crystal structure of one member of the secondary active transporter family, the sn-glycerol-3-phosphate (G3P) transporter (GlpT) of the inner membrane of Escherichia coli, suggests a mechanism for substrate translocation across the membrane that involves a rocker-switch-type movement of the protein. This rocker-switch mechanism makes two specific predictions with respect to kinetic behavior: the transport rate increases with the temperature, whereas the binding affinity of the transporter to a substrate is temperature-independent.

View Article and Find Full Text PDF

Tricyclic antidepressants exert their pharmacological effect-inhibiting the reuptake of serotonin, norepinephrine, and dopamine-by directly blocking neurotransmitter transporters (SERT, NET, and DAT, respectively) in the presynaptic membrane. The drug-binding site and the mechanism of this inhibition are poorly understood. We determined the crystal structure at 2.

View Article and Find Full Text PDF

The protein components of the reaction center (RC) and core light-harvesting (LH 1) complexes of photosynthetic bacteria have evolved to specifically, but non-covalently, bind bacteriochlorophyll (Bchl). The contribution to binding of specific structural elements in the protein and Bchl may be determined for the LH 1 complex because its subunit can be studied by reconstitution under equilibrium conditions. Important to the determination and utilization of such information is the characterization of the interacting molecular species.

View Article and Find Full Text PDF

This Review summarises the current state of research on the structure and function of light-harvesting apparatus in purple photosynthetic bacteria. Particular emphasis is placed on the major open questions still outstanding in this field in addition to what is already known.

View Article and Find Full Text PDF

The harvesting of solar radiation by purple photosynthetic bacteria is achieved by circular, integral membrane pigment-protein complexes. There are two main types of light-harvesting complex, termed LH2 and LH1, that function to absorb light energy and to transfer that energy rapidly and efficiently to the photochemical reaction centres where it is trapped. This mini-review describes our present understanding of the structure and function of the purple bacterial light-harvesting complexes.

View Article and Find Full Text PDF

Reconstitution experiments with a chemically synthesized core light-harvesting (LH1) beta-polypeptide analogue having 3-methylhistidine instead of histidine in the position that normally donates the coordinating ligand to bacteriochlorophyll (Bchl) have provided the experimental data needed to assign to B820 one of the two possible alphabeta.2Bchl pairs that are observed in the crystal structure of LH2 from Phaeospirillum (formerly Rhodospirillum) molischianum, the one with rings III and V of Bchl overlapping. Consistent with the assigned structure, experimental evidence is provided to show that significant stabilizing interactions for both the subunit complex (B820) and LH1 occur between the N-terminal regions of the alpha- and beta-polypeptides.

View Article and Find Full Text PDF

The crystal structure at 4.8 angstrom resolution of the reaction center-light harvesting 1 (RC-LH1) core complex from Rhodopseudomonas palustris shows the reaction center surrounded by an oval LH1 complex that consists of 15 pairs of transmembrane helical alpha- and beta-apoproteins and their coordinated bacteriochlorophylls. Complete closure of the RC by the LH1 is prevented by a single transmembrane helix, out of register with the array of inner LH1 alpha-apoproteins.

View Article and Find Full Text PDF