Background: A multicomponent evaluation of the oxidative consumption of salivary biomolecules by a tooth-whitening oral rinse preparation has been performed using high-resolution proton ((1)H) nuclear magnetic resonance spectroscopy (NMR).
Methods: Unstimulated human saliva samples (n = 12) were treated with aliquots of the oral rinse tested and 600 MHz (1)H NMR spectra acquired on these samples demonstrated that hydrogen peroxide (H(2)O(2)) and/or peroxodisulphate (S(2)O(8) (2-)) present in this product gave rise to the oxidative decarboxylation of the salivary electron-donor pyruvate (to acetate and CO(2)), and also oxidized methionine (a precursor to volatile sulphur compounds responsible for oral malodour), and malodourous trimethylamine to methionine sulphoxide and trimethylamine-N-oxide, respectively (reductions observed in the salivary concentrations of each biomolecular peroxide-scavenging agent were all extremely statistically significant, p < 0.005).
High-resolution (1)H NMR spectroscopy demonstrated that addition of Co(II) ions to isolated human salivary supernatants (HSSs) gave rise to its complexation by a variety of biomolecules. The relative efficacies of these complexants/chelators in this context were classifiable by the influence of added Co(II) on their line-widths and chemical shift values, and also the added Co(II) concentration-dependence of these spectral modifications. Those which were most affected by the addition of this metal ion were lactate > formate ≈histidinate > succinate, this order reflecting the ability of these complexants to compete for the available Co(II) in terms of (1) thermodynamic equilibrium constants for the formation of their complexes and (2) their HSS concentrations.
View Article and Find Full Text PDFDentifrices containing H(2)O-reactive bioactive glasses alleviate hypersensitivity in teeth via the blockage of open dentinal tubules. Here, the ability of two such products to release Ca(2+) ions into human saliva was investigated, together with their influence on the status of this biofluid's (1)H NMR-detectable biomolecules. Human salivary supernatants were equilibrated with increasing volumes of those derived from each dentifrice (5.
View Article and Find Full Text PDFBackground: High field (1)H and (51)V NMR spectroscopies were employed to determine the oxidation state and complexation status of vanadium ions in intact osteoarthritic knee-joint synovial fluid (OA SF) when pre-added as V(III)((aq.)), V(IV)((aq.)) and V(V)((aq.
View Article and Find Full Text PDFHigh resolution 1H NMR spectroscopy has been employed to investigate the detection and quantification of the illicit "date-rape" drug gamma-hydroxybutyrate (GHB) in both human saliva and a commonly-consumed low-alcohol beer product. Data acquired revealed that this multicomponent analytical technique provided unequivocal evidence for the detection of this agent by this technique in both of these matrices, i.e.
View Article and Find Full Text PDFHigh resolution proton (1H) nuclear magnetic resonance (NMR) spectroscopy was employed to simultaneously evaluate the oxidising actions of ozone (O3) towards a wide range of salivary biomolecules in view of its applications in dental practices, which may serve as a viable and convenient means for the treatment of dental caries. Treatment of supernatants derived from unstimulated human saliva specimens (n=12) with O3 (4.48 mmol) revealed that this reactive oxygen species gave rise to the oxidative consumption of pyruvate (generating acetate and CO2 as products), lactate (to pyruvate and sequentially acetate and CO2), carbohydrates in general (a process generating formate), methionine (giving rise to its corresponding sulphoxide), and urate (to allantoin).
View Article and Find Full Text PDFHigh field 1H NMR spectroscopy demonstrated that the equilibration of added Al(III) ions in osteoarthritic (OA) knee-joint synovial fluid (SF) resulted in its complexation by citrate and, to a much lesser extent, tyrosine and histidine. The ability of these ligands, together with inorganic phosphate, to compete for the available Al(III) in terms of (1) thermodynamic equilibrium constants for the formation of their complexes and (2) their SF concentrations was probed through the use of computer speciation calculations, which considered low-molecular-mass binary and ternary Al(III) species, the predominant Al(III) plasma transport protein transferrin, and also relevant hydrolysis and precipitation processes. It was found that, at relatively low added Al(III) concentrations, citrate species were more favoured, whilst phosphate species became dominant at higher levels.
View Article and Find Full Text PDFHigh field (1)H NMR spectroscopy demonstrated that equilibration of added Cr(III) ions in osteoarthritic knee-joint synovial fluid (SF) resulted in its complexation by a range of biomolecules, the relative efficacies of these complexants/chelators being threonine approximately alanine>glycine>glutamine>citrate>histidine approximately phenylalanine approximately tyrosine>valine approximately isoleucine approximately leucine>glutamate>lactate approximately acetate approximately formate approximately pyruvate, this order reflecting the ability of these ligands to compete for the available Cr(III) in terms of (1) thermodynamic equilibrium constants for the formation of their complexes and (2) their SF concentrations. The significance of these observations with regard to the in vivo corrosion of chromium-containing metal alloy joint prostheses (e.g.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2005
Previous investigations have indicated a deleterious leakage of Ti(III) and/or Ti(IV) species from Ti-Al-V alloy joint prostheses into adjacent tissue, synovium or synovial fluid (SF) in vivo. In view of the importance of the particular chemical nature of such complexes in determining their biological activity, we have employed high field proton (1H) NMR spectroscopy to "speciate" Ti(IV) in inflammatory SF. Treatment of osteoarthritic SF samples with increasing concentrations of Ti(IV) (0.
View Article and Find Full Text PDFThe applications of high resolution (1)H NMR analysis as a diagnostic probe for human saliva are reviewed with special reference to diabetes mellitus, and a recently published report regarding the ability of this technique to detect advanced glycation endproducts (AGEs) in this biofluid [Biochem. Biophys. Res.
View Article and Find Full Text PDFHigh field 1H NMR spectroscopy demonstrated that addition of Co(II) ions to osteoarthritic knee-joint synovial fluid (SF) resulted in its complexation by a range of biomolecules, the relative efficacies of these complexants/chelators being citrate >> histidine - threonine >> glycine - glutamate - glutamine - phenylalanine tyrosine > formate > lactate >> alanine > valine > acetate > pyruvate > creatinine, this order reflecting the ability of these ligands to compete for the available Co(II) in terms of (1) thermodynamic equilibrium constants for the formation of their complexes and (2) their SF concentrations. Since many of these SF Co(II) complexants (e.g.
View Article and Find Full Text PDFMulticomponent high-resolution 1H and 13C NMR analysis has been employed for the purpose of detecting and quantifying a wide range of fatty acids (as triacylglycerols or otherwise) in encapsulated marine cod liver oil supplements. The 1H NMR technique provided quantitative data regarding the docosahexaenoic acid content of these products, which serves as a valuable index of fish oil quality, and a combination of both 1H and 13C spectroscopies permitted the analysis of many further components therein, including sn-1 monoacylglycerols, sn-1,2 and -1,3 diacylglycerol adducts, together with a range of minor components, such as trans-fatty acids, free glycerol and cholesterol, and added vitamins A and E. The identities of each of the above agents were confirmed by the application of two-dimensional 1H-1H spectroscopies.
View Article and Find Full Text PDFLipid oxidation products (LOPs), generated in culinary oils during episodes of thermal stressing can give rise to cellular damage. The aims of this study were to determine whether orally-administered, LOP-containing thermally-stressed safflower oil exerts teratogenic actions in rats, and whether this effect could be prevented by co-administration of alpha-tocopherol (alpha-TOH). Safflower oil was heated for a period of 20 min according to standard frying practices and stored at -20 degrees C under N2.
View Article and Find Full Text PDF