While canines are most commonly trained to detect traditional explosives, such as nitroaromatics and smokeless powders, homemade explosives (HMEs), such as fuel-oxidizer mixtures, are arguably a greater threat. As such, it is imperative that canines are sufficiently trained in the detection of such HMEs. The training aid delivery device (TADD) is a primary containment device that has been used to house HMEs and HME components for canine detection training purposes.
View Article and Find Full Text PDFFluctuations in ultra high purity (UHP) helium supply has the potential to negatively impact critical research efforts. Disruptions have increased significantly with suppliers prioritizing delivery to medical facilities. Due to the greater demand for helium, supply issues are likely to continue through the coming years.
View Article and Find Full Text PDFThe canine olfactory system is a highly efficient and intricate tool often exploited by humans for detection for its many attributes, including impressive sensitivity to trace analyte vapors. Canine detectors are often touted as having lower limits of detection, or olfactory detection threshold (ODT), than other field-relevant detection technologies; however, previous attempts to quantify canine ODTs have resulted in reported estimates spanning multiple orders of magnitude, even for the same analyte. A major contributor to these discrepancies is the vapor delivery method used for testing, where losses due to adsorption and dilution are often unaccounted for, and the presence of unattended compounds in the vapor stream due to carryover may go unnoticed.
View Article and Find Full Text PDFA novel method for the detection of vaporous products was developed utilizing a derivatizing agent collected onto a cryo-cooled gas chromatograph (GC) inlet, with analysis by gas chromatography-mass spectrometry (GC-MS). The technique was applied to the detection of ammonia, which has been difficult to detect at trace levels, particularly in the presence of other chemical interferents, due to its small mass and high volatility. To address this, the ammonia is derivatized in the inlet with butyl chloroformate to produce butyl carbamate, a compound that is retained by GC columns and compatible with standard GC-MS analysis.
View Article and Find Full Text PDFWhile there is a large body of research on the properties and detection of traditional military high explosives and propellant low explosives, there is a dearth of research on homemade explosive (HME) materials, though they are prevalent today. The safety of working with these materials in the laboratory is the greatest limiting factor preventing HME research. A vapor delivery tool, the Mixed Vapor Generation Device (MV-Gen), was designed to safely contain the individual solid or liquid components that often compose homemade explosives vapor plumes and deliver the mixed component vapors for instrumental sampling and analysis.
View Article and Find Full Text PDF