Molecular devices are capable of performing a number of functions from mechanical motion to simple computation. Their utility is somewhat limited, however, by difficulties associated with coupling them with either each other or with interfaces such as electrodes. Self-assembly of coupled molecular devices provides an option for the construction of larger entities that can more easily integrate with existing technologies.
View Article and Find Full Text PDFKey descriptors in hydrogenation catalysis are the nature of the active sites for H2 activation and the adsorption strength of H atoms to the surface. Using atomically resolved model systems of dilute Pd-Au surface alloys and density functional theory calculations, we determine key aspects of H2 activation, diffusion, and desorption. Pd monomers in a Au(111) surface catalyze the dissociative adsorption of H2 at temperatures as low as 85 K, a process previously expected to require contiguous Pd sites.
View Article and Find Full Text PDFSurface-bound molecular rotation can occur with the rotational axis either perpendicular (azimuthal) or parallel (altitudinal) to the surface. The majority of molecular rotor studies involve azimuthal rotors, whereas very few altitudinal rotors have been reported. In this work, altitudinal rotors are formed by means of coupling aryl halides through a surface-mediated Ullmann coupling reaction, producing a reaction state-dependent altitudinal molecular rotor/stator.
View Article and Find Full Text PDF