Publications by authors named "Christopher J Howe"

The genomes of peridinin-containing dinoflagellate chloroplasts have a very unusual organisation. These genomes are highly fragmented and greatly reduced, with most of the usual complement of chloroplast genes relocated to the nucleus. Dinoflagellate chloroplasts highlight evolutionary changes that are found to varying extents in a number of other organelle genomes.

View Article and Find Full Text PDF
Article Synopsis
  • Some plants and algae that have chloroplasts evolved to lose their ability to photosynthesize, but kept the chloroplasts for different uses.
  • Some dinoflagellate algae lost half of their photosynthesis system but still kept the other half.
  • This adaptation allowed them to develop a new way to sense light.
View Article and Find Full Text PDF

Photosystems II and I (PSII, PSI) are the reaction centre-containing complexes driving the light reactions of photosynthesis; PSII performs light-driven water oxidation and PSI further photo-energizes harvested electrons. The impressive efficiencies of the photosystems have motivated extensive biological, artificial and biohybrid approaches to 're-wire' photosynthesis for higher biomass-conversion efficiencies and new reaction pathways, such as H evolution or CO fixation. Previous approaches focused on charge extraction at terminal electron acceptors of the photosystems.

View Article and Find Full Text PDF

Many eukaryotes acquired chloroplasts by endosymbiotic acquisition of photosynthetic bacteria or already-domesticated chloroplasts from other eukaryotes. However, the ciliate Mesodinium rubrum acquires the nucleus of a photosynthetic eukaryote, as well as its chloroplast, resulting in dramatic metabolic remodelling in the ciliate.

View Article and Find Full Text PDF

It is possible to generate small amounts of electrical power directly from photosynthetic microorganisms-arguably the greenest of green energy. But will it have useful applications, and what are the hurdles if so?

View Article and Find Full Text PDF

Synthetic biology research and its industrial applications rely on deterministic spatiotemporal control of gene expression. Recently, electrochemical control of gene expression has been demonstrated in electrogenetic systems (redox-responsive promoters used alongside redox inducers and electrodes), allowing for the direct integration of electronics with biological processes. However, the use of electrogenetic systems is limited by poor activity, tunability, and standardization.

View Article and Find Full Text PDF

Cyanobacteria employ two-component sensor-response regulator systems to monitor and respond to environmental challenges. The response regulators RpaA, RpaB, Rre1 and RppA are integral to circadian clock function and abiotic stress acclimation in cyanobacteria. RpaA, RpaB and Rre1 are known to interact with ferredoxin or thioredoxin, raising the possibility of their thiol regulation.

View Article and Find Full Text PDF

The rewiring of photosynthetic biomachineries to electrodes is a forward-looking semi-artificial route for sustainable bio-electricity and fuel generation. Currently, it is unclear how the electrode and biomaterial interface can be designed to meet the complex requirements for high biophotoelectrochemical performance. Here we developed an aerosol jet printing method for generating hierarchical electrode structures using indium tin oxide nanoparticles.

View Article and Find Full Text PDF

The phototrophic bacterium is emerging as a promising biotechnological chassis organism, due to its resilience to a range of harsh conditions, a wide metabolic repertoire, and the ability to quickly regenerate ATP using light. However, realization of this promise is impeded by a lack of efficient, rapid methods for genetic modification. Here, we present optimized tools for generating chromosomal insertions and deletions employing electroporation as a means of transformation.

View Article and Find Full Text PDF

Absorption spectroscopy is widely used to determine absorption and transmission spectra of chromophores in solution, in addition to suspensions of particles, including micro-organisms. Light scattering, caused by photons deflected from part or all of the cells or other particles in suspension, results in distortions to the absorption spectra, lost information and poor resolution. A spectrophotometer with an integrating sphere may be used to alleviate this problem.

View Article and Find Full Text PDF

During photosynthesis, electrons are transferred between the cytochrome b6f complex and photosystem I. This is carried out by the protein plastocyanin in plant chloroplasts, or by either plastocyanin or cytochrome c6 in many cyanobacteria and eukaryotic algal species. There are three further cytochrome c6 homologs: cytochrome c6A in plants and green algae, and cytochromes c6B and c6C in cyanobacteria.

View Article and Find Full Text PDF

Bioelectrochemical approaches for energy conversion rely on efficient wiring of natural electron transport chains to electrodes. However, state-of-the-art exogenous electron mediators give rise to significant energy losses and, in the case of living systems, long-term cytotoxicity. Here, we explored new selection criteria for exogenous electron mediation by examining phenazines as novel low-midpoint potential molecules for wiring the photosynthetic electron transport chain of the cyanobacterium sp.

View Article and Find Full Text PDF

Cyanobacteria hold promise as cell factories for the photoautotrophic conversion of carbon dioxide to useful chemicals. For the eventual commercial viability of such processes, cyanobacteria need to be engineered for (i) efficient channeling of carbon flux toward the product of interest and (ii) improved product tolerance, the latter being the focus of this study. We chose the recently reported, fast-growing, high light and CO tolerant cyanobacterium Synechococcus elongatus PCC 11801 for adaptive laboratory evolution.

View Article and Find Full Text PDF

Photomixotrophy is a metabolic state that enables photosynthetic microorganisms to simultaneously perform photosynthesis and metabolism of imported organic carbon substrates. This process is complicated in cyanobacteria, since many, including sp. PCC 6803, conduct photosynthesis and respiration in an interlinked thylakoid membrane electron transport chain.

View Article and Find Full Text PDF

Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa.

View Article and Find Full Text PDF

Biophotovoltaic systems (BPVs) resemble microbial fuel cells, but utilise oxygenic photosynthetic microorganisms associated with an anode to generate an extracellular electrical current, which is stimulated by illumination. Study and exploitation of BPVs have come a long way over the last few decades, having benefited from several generations of electrode development and improvements in wiring schemes. Power densities of up to 0.

View Article and Find Full Text PDF

A novel mediatorless photo-bioelectrochemical sensor operated with a biofilm of the cyanobacterium PCC6803 . for herbicide detection with long term stability (>20 days) was successfully developed and tested. Photoanodic current generation was obtained in the absence of artificial mediators.

View Article and Find Full Text PDF

Cyanobacteria are complex prokaryotes, incorporating a Gram-negative cell wall and internal thylakoid membranes (TMs). However, localization of proteins within cyanobacterial cells is poorly understood. Using subcellular fractionation and quantitative proteomics, we produced an extensive subcellular proteome map of an entire cyanobacterial cell, identifying ∼67% of proteins in sp.

View Article and Find Full Text PDF

The malaria parasite Plasmodium and other apicomplexans such as Toxoplasma evolved from photosynthetic organisms and contain an essential, remnant plastid termed the apicoplast. Transcription of the apicoplast genome is polycistronic with extensive RNA processing. Yet little is known about the mechanism of apicoplast RNA processing.

View Article and Find Full Text PDF

The plastid genomes of peridinin-containing dinoflagellates are highly unusual, possessing very few genes, which are located on small chromosomal elements termed "minicircles". These minicircles may contain genes, or no recognisable coding information. Transcripts produced from minicircles may undergo unusual processing events, such as the addition of a 3' poly(U) tail.

View Article and Find Full Text PDF
Article Synopsis
  • Coral reefs are vital and diverse marine ecosystems, with dinoflagellate algae playing a key role by living symbiotically with coral.
  • Efforts to study the relationship between these algae and coral were limited due to a lack of genetic transformation technologies for dinoflagellates.
  • Researchers successfully introduced new genetic material into the dinoflagellate chloroplast genome and showed that the modification is stable and heritable over a year of cultivation, marking a significant advancement in the field.
View Article and Find Full Text PDF

Recent advances in synthetic biology research have been underpinned by an exponential increase in available genomic information and a proliferation of advanced DNA assembly tools. The adoption of plasmid vector assembly standards and parts libraries has greatly enhanced the reproducibility of research and the exchange of parts between different labs and biological systems. However, a standardized modular cloning (MoClo) system is not yet available for cyanobacteria, which lag behind other prokaryotes in synthetic biology despite their huge potential regarding biotechnological applications.

View Article and Find Full Text PDF

Modern transformation and genome editing techniques have shown great success across a broad variety of organisms. However, no study of successfully applied genome editing has been reported in a dinoflagellate despite the first genetic transformation of Symbiodinium being published about 20 years ago. Using an array of different available transformation techniques, we attempted to transform Symbiodinium microadriaticum (CCMP2467), a dinoflagellate symbiont of reef-building corals, with the view to performing subsequent CRISPR-Cas9 mediated genome editing.

View Article and Find Full Text PDF

Biophotovoltaic methods rely on the fact that photosynthetic microorganisms, like many others, can export small amounts of electric current. For photosynthetic organisms, this current usually increases on illumination. This "exoelectrogenic" property may be of biotechnological interest, and may also provide useful experimental insights into the physiological status of the cell.

View Article and Find Full Text PDF