RecQ helicases are believed to function in repairing replication forks stalled by DNA damage and may also play a role in the intra-S-phase checkpoint, which delays the replication of damaged DNA, thus permitting repair to occur. Since little is known regarding the effects of DNA damage on RecQ helicases, and because the replication and recombination defects in Werner syndrome cells may reflect abnormal processing of damaged DNA associated with the replication fork, we examined the effects of specific bulky, covalent adducts at N(6) of deoxyadenosine (dA) or N(2) of deoxyguanosine (dG) on Werner (WRN) syndrome helicase activity. The adducts are derived from the optically active 7,8-diol 9,10-epoxide (DE) metabolites of the carcinogen benzo[a]pyrene (BaP).
View Article and Find Full Text PDF[reaction: see text] Colchicine is an important and synthetically challenging natural product. The key synthetic step in this approach to the synthesis of colchicine involved a palladium-catalyzed cross-coupling reaction between 5-bromotropolone (4) and an aryl siloxane to form the aryl-tropolone bond. The coupling of a variety of highly functionalized aryl siloxane derivatives was investigated and optimized coupling conditions were developed.
View Article and Find Full Text PDFGeneral reaction conditions for the synthesis of aryl(trialkoxy)silanes from aryl Grignard and lithium reagents and tetraalkyl orthosilicates (Si(OR)(4)) have been developed. Ortho-, meta-, and para-substituted bromoarenes underwent efficient metalation and silylation at low temperature to provide aryl siloxanes. Mixed results were obtained with heteroaromatic substrates: 3-bromothiophene, 3-bromo-4-methoxypyridine, 5-bromoindole, and N-methyl-5-bromoindole underwent silylation in good yield, whereas a low yield of siloxane was obtained from 2-bromofuran, and 2-bromopyridine failed to give silylated product.
View Article and Find Full Text PDFVaccinia DNA topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a specific target site 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrow N(-1) in duplex DNA. Here we study the effects of position-specific DNA intercalators on the rate and extent of single-turnover DNA transesterification. Chiral C-1 R and S trans-opened 3,4-diol 1,2-epoxide adducts of benzo[c]phenanthrene (BcPh) were introduced at single N2-deoxyguanosine and N6-deoxyadenosine positions within the 3'-G(+5)G(+4)G(+3)A(+2)A(+1)T(-1)A(-2) sequence of the nonscissile DNA strand.
View Article and Find Full Text PDF