Fish oil (FO) supplementation in humans results in the incorporation of omega-3 fatty acids (FAs) eicosapentaenoic acid (EPA; C20:5) and docosahexaenoic acid (DHA; C20:6) into skeletal muscle membranes. However, despite the importance of membrane composition in structure-function relationships, a paucity of information exists regarding how different muscle membranes/organelles respond to FO supplementation. Therefore, the purpose of the present study was to determine the effects 12 weeks of FO supplementation (3g EPA/2g DHA daily) on the phospholipid composition of sarcolemmal and mitochondrial fractions, as well as whole muscle responses, in healthy young males.
View Article and Find Full Text PDFAppl Physiol Nutr Metab
September 2014
Omega-3 supplementation has been purported to improve the function of several organs in the body, including reports of increased resting metabolic rate (RMR) and reliance on fat oxidation. However, the potential for omega-3s to modulate human skeletal muscle metabolism has received little attention. This study examined the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation on whole-body RMR and the content of proteins involved in fat metabolism in human skeletal muscle.
View Article and Find Full Text PDF